Velocity calibration and wavefield decomposition for walkover VSP data

Markus von Steht and Jürgen Mann

Wave Inversion Technology Consortium Geophysical Institute, University of Karlsruhe (TH)

November 13, 2008

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Overview

Theory

CRS approach for VSP geometry FO CRS traveltime approximation Calibration method

Data example

Survey description Velocity calibration Wavefield decomposition

Conclusions & outlook

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

◆□ ▶ ▲□ ▶ 少々で

Finite-offset (FO) 2D CRS stack theory initially introduced for surface seismic (Zhang et al., 2001)

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▶ ▲□▶ ろくで

Finite-offset (FO) 2D CRS stack theory initially introduced for surface seismic (Zhang et al., 2001)

 second order approximation based on paraxial ray-theory Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Finite-offset (FO) 2D CRS stack theory initially introduced for surface seismic (Zhang et al., 2001)

- second order approximation based on paraxial ray-theory
- central ray is non-zero offset

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Finite-offset (FO) 2D CRS stack theory initially introduced for surface seismic (Zhang et al., 2001)

- second order approximation based on paraxial ray-theory
- central ray is non-zero offset
 ⇒ expansion points (*x*_S, *x*_G) for each simulated source and receiver pair

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Finite-offset (FO) 2D CRS stack theory initially introduced for surface seismic (Zhang et al., 2001)

- second order approximation based on paraxial ray-theory
- central ray is non-zero offset
 ⇒ expansion points (*x*_S, *x*_G) for each simulated source and receiver pair
- FO CRS operator depends on five parameters

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Finite-offset (FO) 2D CRS stack theory initially introduced for surface seismic (Zhang et al., 2001)

- second order approximation based on paraxial ray-theory
- ▶ central ray is non-zero offset
 ➡ expansion points (*x*_S, *x*_G) for each simulated source and receiver pair
- FO CRS operator depends on five parameters
 multi-dimensional optimization problem

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Finite-offset (FO) 2D CRS stack theory initially introduced for surface seismic (Zhang et al., 2001)

- second order approximation based on paraxial ray-theory
- ▶ central ray is non-zero offset
 ➡ expansion points (*x*_S, *x*_G) for each simulated source and receiver pair
- FO CRS operator depends on five parameters
 multi-dimensional optimization problem
- geometrical explanation of stacking parameters

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Finite-offset (FO) 2D CRS stack theory initially introduced for surface seismic (Zhang et al., 2001)

- second order approximation based on paraxial ray-theory
- ▶ central ray is non-zero offset
 ➡ expansion points (*x*_S, *x*_G) for each simulated source and receiver pair
- FO CRS operator depends on five parameters
 multi-dimensional optimization problem
- geometrical explanation of stacking parameters
 hypothetical wavefronts, in vicinity of sources and receivers assuming:

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Finite-offset (FO) 2D CRS stack theory initially introduced for surface seismic (Zhang et al., 2001)

- second order approximation based on paraxial ray-theory
- ▶ central ray is non-zero offset
 ➡ expansion points (*x*_S, *x*_G) for each simulated source and receiver pair
- FO CRS operator depends on five parameters
 multi-dimensional optimization problem
- geometrical explanation of stacking parameters
 hypothetical wavefronts, in vicinity of sources and receivers assuming:
 - Iocal isotropy

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Finite-offset (FO) 2D CRS stack theory initially introduced for surface seismic (Zhang et al., 2001)

- second order approximation based on paraxial ray-theory
- ▶ central ray is non-zero offset
 ➡ expansion points (*x*_S, *x*_G) for each simulated source and receiver pair
- FO CRS operator depends on five parameters
 multi-dimensional optimization problem
- geometrical explanation of stacking parameters
 hypothetical wavefronts, in vicinity of sources and receivers assuming:
 - Iocal isotropy
 - Iocal homogeneity

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Finite-offset (FO) 2D CRS stack theory initially introduced for surface seismic (Zhang et al., 2001)

- second order approximation based on paraxial ray-theory
- ▶ central ray is non-zero offset
 ▶ expansion points (*x*_S, *x*_G) for each simulated source and receiver pair
- FO CRS operator depends on five parameters
 multi-dimensional optimization problem
- geometrical explanation of stacking parameters
 hypothetical wavefronts, in vicinity of sources and receivers assuming:
 - local isotropy
 - Iocal homogeneity
 - known velocities

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Finite-offset (FO) 2D CRS stack theory initially introduced for surface seismic (Zhang et al., 2001)

- second order approximation based on paraxial ray-theory
- ▶ central ray is non-zero offset
 ▶ expansion points (*x*_S, *x*_G) for each simulated source and receiver pair
- FO CRS operator depends on five parameters
 multi-dimensional optimization problem
- geometrical explanation of stacking parameters
 hypothetical wavefronts, in vicinity of sources and receivers assuming:
 - local isotropy
 - Iocal homogeneity
 - known velocities calibration required

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

VSP measurement configuration

S and G are the positions of $\vec{x_S}$ and $\vec{x_G}$, respectively

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▶ ▲□▶ 少へで

$$\begin{split} \tau_{\text{hyp}}^2 &= \left(\begin{array}{c} \tau_0 + \frac{\sin\beta_S}{v_S} \Delta x_S - \frac{\cos\beta_S}{v_S} \Delta z_S + \frac{\sin\beta_G}{v_G} \Delta x_G - \frac{\cos\beta_G}{v_G} \Delta z_G \end{array} \right)^2 \\ &+ \tau_0 \ AB^{-1} \ \left(\Delta x_S - \Delta z_S \tan\beta_S \right)^2 \\ &+ \tau_0 \ DB^{-1} \ \left(\Delta x_G - \Delta z_G \tan\beta_G \right)^2 \\ &- 2 \ \tau_0 \ B^{-1} \ \left(\Delta x_S - \Delta z_S \tan\beta_S \right) \left(\Delta x_G - \Delta z_G \tan\beta_G \right). \end{split}$$

~

$$\begin{split} \tau_{\text{hyp}}^2 &= \left(\begin{array}{c} \tau_0 + \frac{\sin\beta_S}{v_S} \Delta x_S - \frac{\cos\beta_S}{v_S} \Delta z_S + \frac{\sin\beta_G}{v_G} \Delta x_G - \frac{\cos\beta_G}{v_G} \Delta z_G \end{array} \right)^2 \\ &+ \tau_0 \ AB^{-1} \ \left(\Delta x_S - \Delta z_S \tan\beta_S \right)^2 \\ &+ \tau_0 \ DB^{-1} \ \left(\Delta x_G - \Delta z_G \tan\beta_G \right)^2 \\ &- 2 \ \tau_0 \ B^{-1} \ \left(\Delta x_S - \Delta z_S \tan\beta_S \right) \left(\Delta x_G - \Delta z_G \tan\beta_G \right). \end{split}$$

~

>
$$\tau_0$$
: traveltime of central FO ray

$$\begin{aligned} \tau_{\text{hyp}}^{2} &= \left(\tau_{0} + \frac{\sin\beta_{S}}{v_{S}} \Delta x_{S} - \frac{\cos\beta_{S}}{v_{S}} \Delta z_{S} + \frac{\sin\beta_{G}}{v_{G}} \Delta x_{G} - \frac{\cos\beta_{G}}{v_{G}} \Delta z_{G} \right)^{2} \\ &+ \tau_{0} AB^{-1} \left(\Delta x_{S} - \Delta z_{S} \tan\beta_{S} \right)^{2} \\ &+ \tau_{0} DB^{-1} \left(\Delta x_{G} - \Delta z_{G} \tan\beta_{G} \right)^{2} \\ &- 2 \tau_{0} B^{-1} \left(\Delta x_{S} - \Delta z_{S} \tan\beta_{S} \right) \left(\Delta x_{G} - \Delta z_{G} \tan\beta_{G} \right). \end{aligned}$$

- τ_0 : traveltime of central FO ray
- $\Delta x_S, \Delta z_S, \Delta x_G, \Delta z_G$: horizontal and vertical offsets

$$\begin{split} \tau_{\text{hyp}}^2 &= \left(\begin{array}{c} \tau_0 + \frac{\sin\beta_S}{v_S} \Delta x_S - \frac{\cos\beta_S}{v_S} \Delta z_S + \frac{\sin\beta_G}{v_G} \Delta x_G - \frac{\cos\beta_G}{v_G} \Delta z_G \end{array} \right)^2 \\ &+ \tau_0 \ AB^{-1} \ \left(\Delta x_S - \Delta z_S \tan\beta_S \right)^2 \\ &+ \tau_0 \ DB^{-1} \ \left(\Delta x_G - \Delta z_G \tan\beta_G \right)^2 \\ &- 2 \ \tau_0 \ B^{-1} \ \left(\Delta x_S - \Delta z_S \tan\beta_S \right) \left(\Delta x_G - \Delta z_G \tan\beta_G \right). \end{split}$$

- τ_0 : traveltime of central FO ray
- $\Delta x_S, \Delta z_S, \Delta x_G, \Delta z_G$: horizontal and vertical offsets
- v_S , v_G : velocities in the vicinity of \vec{x}_S and \vec{x}_G

$$\begin{aligned} \tau_{\text{hyp}}^{2} &= \left(\tau_{0} + \frac{\sin\beta_{S}}{v_{S}} \Delta x_{S} - \frac{\cos\beta_{S}}{v_{S}} \Delta z_{S} + \frac{\sin\beta_{G}}{v_{G}} \Delta x_{G} - \frac{\cos\beta_{G}}{v_{G}} \Delta z_{G} \right)^{2} \\ &+ \tau_{0} AB^{-1} \left(\Delta x_{S} - \Delta z_{S} \tan\beta_{S} \right)^{2} \\ &+ \tau_{0} DB^{-1} \left(\Delta x_{G} - \Delta z_{G} \tan\beta_{G} \right)^{2} \\ &- 2 \tau_{0} B^{-1} \left(\Delta x_{S} - \Delta z_{S} \tan\beta_{S} \right) \left(\Delta x_{G} - \Delta z_{G} \tan\beta_{G} \right). \end{aligned}$$

- τ_0 : traveltime of central FO ray
- $\Delta x_S, \Delta z_S, \Delta x_G, \Delta z_G$: horizontal and vertical offsets
- v_S , v_G : velocities in the vicinity of $\vec{x_S}$ and $\vec{x_G}$
- > β_S , β_G : emergence angles of central ray

$$\begin{split} \tau_{\text{hyp}}^2 &= \left(\begin{array}{c} \tau_0 + \frac{\sin\beta_S}{v_S} \Delta x_S - \frac{\cos\beta_S}{v_S} \Delta z_S + \frac{\sin\beta_G}{v_G} \Delta x_G - \frac{\cos\beta_G}{v_G} \Delta z_G \end{array} \right)^2 \\ &+ \tau_0 \ AB^{-1} \ \left(\Delta x_S - \Delta z_S \tan\beta_S \right)^2 \\ &+ \tau_0 \ DB^{-1} \ \left(\Delta x_G - \Delta z_G \tan\beta_G \right)^2 \\ &- 2 \ \tau_0 \ B^{-1} \ \left(\Delta x_S - \Delta z_S \tan\beta_S \right) \left(\Delta x_G - \Delta z_G \tan\beta_G \right). \end{split}$$

- τ_0 : traveltime of central FO ray
- $\Delta x_S, \Delta z_S, \Delta x_G, \Delta z_G$: horizontal and vertical offsets
- ▶ v_S , v_G : velocities in the vicinity of $\vec{x_S}$ and $\vec{x_G}$
- ▶ β_S , β_G : emergence angles of central ray
- ► DB⁻¹, AB⁻¹, B⁻¹: composites of elements of ray-propagator matrix

A look at multi-coverage walkover data

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

◆□ ▶ ▲□ ▶ 少々で

A look at multi-coverage walkover data

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

・ロト ・日 ・ うへで

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▶ ▲□▶ ろくで

Stacking parameters are converted to wavefield attributes by using tuned velocities.

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

◆□ ▶ ▲□ ▶ 少々で

Stacking parameters are converted to wavefield attributes by using tuned velocities.

► inaccurate velocities ⇔ incorrect attributes

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Stacking parameters are converted to wavefield attributes by using tuned velocities.

- ► inaccurate velocities ⇔ incorrect attributes
- conventional way: checkshot inversion

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Stacking parameters are converted to wavefield attributes by using tuned velocities.

- ► inaccurate velocities ⇔ incorrect attributes
- conventional way: checkshot inversion often too inaccurate!

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Stacking parameters are converted to wavefield attributes by using tuned velocities.

- ► inaccurate velocities ⇔ incorrect attributes
- conventional way: checkshot inversion often too inaccurate!
- alternatively: CRS analysis of downgoing waves

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Stacking parameters are converted to wavefield attributes by using tuned velocities.

- ► inaccurate velocities ⇔ incorrect attributes
- conventional way: checkshot inversion often too inaccurate!
- alternatively: CRS analysis of downgoing waves

Assumption:

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Stacking parameters are converted to wavefield attributes by using tuned velocities.

- ► inaccurate velocities ⇔ incorrect attributes
- conventional way: checkshot inversion often too inaccurate!
- alternatively: CRS analysis of downgoing waves

Assumption:

velocities virtually constant within paraxial vicinity

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Stacking parameters are converted to wavefield attributes by using tuned velocities.

- ► inaccurate velocities ⇔ incorrect attributes
- conventional way: checkshot inversion often too inaccurate!
- alternatively: CRS analysis of downgoing waves

Assumption:

 velocities virtually constant within paraxial vicinity (already inherent assumption of CRS method) Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Stacking parameters are converted to wavefield attributes by using tuned velocities.

- ► inaccurate velocities ⇔ incorrect attributes
- conventional way: checkshot inversion often too inaccurate!
- alternatively: CRS analysis of downgoing waves

Assumption:

- velocities virtually constant within paraxial vicinity (already inherent assumption of CRS method)
 - → length of slowness vector $|\vec{p}|$ independent of incidence angle

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Calibration strategy

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

・ロマ ・日マ うくで
VSP data provides only one slowness component:

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

・ロマ ・日マ うくで

 VSP data provides only one slowness component: slowness component p_t tangent to well Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

・ロマ ・日マ うくで

- VSP data provides only one slowness component: slowness component p_t tangent to well
 - rightarrow in general insufficient to determine $|\vec{p}|$

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

・ロマ ・日マ うくで

- VSP data provides only one slowness component: slowness component p_t tangent to well
 - rightarrow in general insufficient to determine $|\vec{p}|$
- special case: walkover VSP

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- VSP data provides only one slowness component: slowness component p_t tangent to well
 - rightarrow in general insufficient to determine $|\vec{p}|$
- special case: walkover VSP
 - p_t of downgoing rays varies with source position \vec{x}_S

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- VSP data provides only one slowness component: slowness component p_t tangent to well
 - rightarrow in general insufficient to determine $|\vec{p}|$
- special case: walkover VSP
 - p_t of downgoing rays varies with source position \vec{x}_S
 - a ray tangent to well at receiver \vec{x}_G is very likely

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- VSP data provides only one slowness component: slowness component p_t tangent to well
 - rightarrow in general insufficient to determine $|\vec{p}|$
- special case: walkover VSP
 - p_t of downgoing rays varies with source position \vec{x}_S
 - ► a ray tangent to well at receiver \vec{x}_G is very likely there: naturally $p_t \equiv |\vec{p}|$

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- VSP data provides only one slowness component: slowness component p_t tangent to well
 - rightarrow in general insufficient to determine $|\vec{p}|$
- special case: walkover VSP
 - p_t of downgoing rays varies with source position \vec{x}_S
 - ► a ray tangent to well at receiver \vec{x}_G is very likely there: naturally $p_t \equiv |\vec{p}|$
- Strategy

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- VSP data provides only one slowness component: slowness component p_t tangent to well
 - rightarrow in general insufficient to determine $|\vec{p}|$
- special case: walkover VSP
 - p_t of downgoing rays varies with source position \vec{x}_S
 - ► a ray tangent to well at receiver \vec{x}_G is very likely there: naturally $p_t \equiv |\vec{p}|$
- Strategy
 - identify downgoing direct P and/or S arrivals

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- VSP data provides only one slowness component: slowness component p_t tangent to well
 - rightarrow in general insufficient to determine $|\vec{p}|$
- special case: walkover VSP
 - p_t of downgoing rays varies with source position \vec{x}_S
 - ► a ray tangent to well at receiver \vec{x}_G is very likely there: naturally $p_t \equiv |\vec{p}|$
- Strategy
 - identify downgoing direct P and/or S arrivals
 - calculate $p_t(\vec{x}_S, \vec{x}_G) \forall$ sources *S* and receivers *G*

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- VSP data provides only one slowness component: slowness component p_t tangent to well
 - rightarrow in general insufficient to determine $|\vec{p}|$
- special case: walkover VSP
 - p_t of downgoing rays varies with source position \vec{x}_S
 - ► a ray tangent to well at receiver \vec{x}_G is very likely there: naturally $p_t \equiv |\vec{p}|$
- Strategy
 - identify downgoing direct P and/or S arrivals
 - calculate $p_t(\vec{x}_S, \vec{x}_G) \forall$ sources *S* and receivers *G*
 - for each *G*, search maximum of $p_t(\vec{x}_S, \vec{x}_G = \text{const})$

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- VSP data provides only one slowness component: slowness component p_t tangent to well
 - rightarrow in general insufficient to determine $|\vec{p}|$
- special case: walkover VSP
 - p_t of downgoing rays varies with source position \vec{x}_S
 - ► a ray tangent to well at receiver \vec{x}_G is very likely there: naturally $p_t \equiv |\vec{p}|$
- Strategy
 - identify downgoing direct P and/or S arrivals
 - calculate $p_t(\vec{x}_S, \vec{x}_G) \forall$ sources *S* and receivers *G*
 - for each *G*, search maximum of $p_t(\vec{x}_S, \vec{x}_G = \text{const})$
 - ► searched-for velocity $v(\vec{x}_G) = \max \{p_t(\vec{x}_S; \vec{x}_G)\}^{-1}$

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

 surface	Velocity calibration and wavefield decomposition
well	M. von Steht & J. Manr
	Overview
	Theory CRS stack for VSP FO CRS-Operator Calibration method
	Data example Survey description Velocity calibration Decomposition
	Conclusions & outlook
]	

	surface	Velocity calibration and wavefield
	well	decomposition M. von Steht & J. Mann
		Overview
		Theory CRS stack for VSP FO CRS-Operator Calibration method
downgoing ray		Data example Survey description Velocity calibration Decomposition
		Conclusions & outlook

	surface	Velocity calibration and wavefield decomposition
	well	M. von Steht & J. Man
\mathbf{X}		Overview
		Theory CRS stack for VSP FO CRS-Operator Calibration method
		Data example Survey description Velocity calibration Decomposition
		Conclusions & outlool

	surface	Velocity calibration and wavefield decomposition
$\langle \rangle$	well	M. von Steht & J. Mai
\backslash		Overview
		Theory CRS stack for VSP FO CRS-Operator Calibration method
		Data example Survey description Velocity calibration Decomposition
		Conclusions & outloc
		▲□▶ ▲圖▶ 少へ()

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▶ ▲□▶ ろくで

separate calibration for P- and S-waves

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

・ロマ ・日マ うくの

- separate calibration for P- and S-waves
- velocity v_G is property of receiver position

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

・ロマ ・回マ シタの

- separate calibration for P- and S-waves
- velocity v_G is property of receiver position
 applicable to also calibrate *reflected* waves

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- separate calibration for P- and S-waves
- velocity v_G is property of receiver position
 applicable to also calibrate *reflected* waves
- Geometric interpretation provides

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- separate calibration for P- and S-waves
- velocity v_G is property of receiver position
 applicable to also calibrate *reflected* waves
- Geometric interpretation provides
 - emergence angles

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- separate calibration for P- and S-waves
- velocity v_G is property of receiver position
 applicable to also calibrate *reflected* waves
- Geometric interpretation provides
 - emergence angles
 - wavefront curvatures

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- separate calibration for P- and S-waves
- velocity v_G is property of receiver position
 applicable to also calibrate *reflected* waves
- Geometric interpretation provides
 - emergence angles
 - wavefront curvatures
- suited for

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- separate calibration for P- and S-waves
- velocity v_G is property of receiver position
 applicable to also calibrate *reflected* waves
- Geometric interpretation provides
 - emergence angles
 - wavefront curvatures
- suited for
 - wavefield decomposition

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- separate calibration for P- and S-waves
- velocity v_G is property of receiver position
 applicable to also calibrate *reflected* waves
- Geometric interpretation provides
 - emergence angles
 - wavefront curvatures
- suited for
 - wavefield decomposition by data example

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- separate calibration for P- and S-waves
- velocity v_G is property of receiver position
 applicable to also calibrate *reflected* waves
- Geometric interpretation provides
 - emergence angles
 - wavefront curvatures
- suited for
 - wavefield decomposition by data example
 - redatuming

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- separate calibration for P- and S-waves
- velocity v_G is property of receiver position
 applicable to also calibrate *reflected* waves
- Geometric interpretation provides
 - emergence angles
 - wavefront curvatures
- suited for

 - redatuming
 - inversion

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

- separate calibration for P- and S-waves
- velocity v_G is property of receiver position
 applicable to also calibrate *reflected* waves
- Geometric interpretation provides
 - emergence angles
 - wavefront curvatures
- suited for
 - wavefield decomposition by data example
 - redatuming
 - inversion
- strategy also suited for deviated wells

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Survey description Velocity calibration Decomposition

Conclusions & outlook

◆□ ▶ ▲□ ▶ 少々で

P-wave velocity [km/s]

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▼ ▲□▼ ろくで

Modeling:

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Survey description Velocity calibration Decomposition

Conclusions & outlook

◆□ ▶ ▲□ ▶ 少々で

Modeling:

wavefront construction method

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▶ ▲□▶ 少々で
Modeling:

- wavefront construction method
- direct P, reflected PP & SS, converted PS

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Survey description Velocity calibration Decomposition

Modeling:

- wavefront construction method
- direct P, reflected PP & SS, converted PS
- 3D wave propagation

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example <u>Surv</u>ey description

Velocity calibration Decomposition

Modeling:

- wavefront construction method
- direct P, reflected PP & SS, converted PS
- 3D wave propagation
- two walkover lines, 100 shots each

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example

Survey description Velocity calibration Decomposition

Modeling:

- wavefront construction method
- direct P, reflected PP & SS, converted PS
- 3D wave propagation
- two walkover lines, 100 shots each
- 40 three-component receiver levels

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example

Survey description Velocity calibration Decomposition

Modeling:

- wavefront construction method
- direct P, reflected PP & SS, converted PS
- 3D wave propagation
- two walkover lines, 100 shots each
- 40 three-component receiver levels
- 2D approach sufficiently accurate for calibration

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example

Survey description Velocity calibration Decomposition

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Survey description Velocity calibration Decomposition

Conclusions & outlook

◆□ ▶ ▲□ ▶ 少々で

convenient CRS parameter: emergence angle

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▶ ▲□▶ ろくで

convenient CRS parameter: emergence angle

 \blacktriangleright tangency \equiv zero angle

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Survey description Velocity calibration Decomposition

Conclusions & outlook

・ロマ ・日マ うくで

convenient CRS parameter: emergence angle

 \blacktriangleright tangency \equiv zero angle

Expected behavior:

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Survey description Velocity calibration Decomposition

convenient CRS parameter: emergence angle

 \blacktriangleright tangency \equiv zero angle

Expected behavior:

over-estimated velocity

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Survey description Velocity calibration Decomposition

convenient CRS parameter: emergence angle

 \blacktriangleright tangency \equiv zero angle

Expected behavior:

 over-estimated velocity zero angle smeared over large offset range Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Survey description Velocity calibration Decomposition

convenient CRS parameter: emergence angle

 \blacktriangleright tangency \equiv zero angle

Expected behavior:

- over-estimated velocity zero angle smeared over large offset range
- under-estimated velocity

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example

Survey description Velocity calibration Decomposition

convenient CRS parameter: emergence angle

 \blacktriangleright tangency \equiv zero angle

Expected behavior:

- over-estimated velocity zero angle smeared over large offset range
- under-estimated velocity zero angle never occurs

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example

Survey description Velocity calibration Decomposition

convenient CRS parameter: emergence angle

 \blacktriangleright tangency \equiv zero angle

Expected behavior:

- over-estimated velocity zero angle smeared over large offset range
- under-estimated velocity zero angle never occurs
- correct velocity

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example

Survey description Velocity calibration Decomposition

convenient CRS parameter: emergence angle

 \blacktriangleright tangency \equiv zero angle

Expected behavior:

- over-estimated velocity zero angle smeared over large offset range
- under-estimated velocity zero angle never occurs
- correct velocity well-localized minimum at zero angle

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example

Survey description Velocity calibration Decomposition

Calibration using checkshot inversion

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

・ロマ ・日マ うくで

Calibration using checkshot inversion

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▶ ▲□▶ 少々で

Calibration with initial model

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▶ ▲□▶ 少々で

Calibration with corrected model

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

・ロマ ・日マ うくで

Forward-modeled angles

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

・ロマ ・日マ うくで

1D velocity curves along well

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▶ ▲□▶ ろくで

1D velocity curves along well

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▼ ▲□▼ ろくで

CRS-based wavefield decomposition

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

◆□ ▶ ▲□ ▶ 少々で

CRS-based wavefield decomposition S

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▼ ▲□▼ ろく(?)

CRS-based wavefield decomposition

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

< □ ト < □ ト < ○ < ○</p>

CRS-based wavefield decomposition S

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▶ ▲母▼ 釣∢?

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory

CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description

Velocity calibration Decomposition

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory

CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Five CS gathers after decomposition

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Five CS gathers after decomposition

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▶ ▲母 ▶ 釣へで

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

・ロマ ・日マ うくで

Calibration of CRS attributes

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

・ロマ ・日マ うくで

Calibration of CRS attributes

high sensitivity to inaccurate velocity

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

▲□▶ ▲母▼ 少々で

Calibration of CRS attributes

- high sensitivity to inaccurate velocity
- simple criterion to determine tuned velocities

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Calibration of CRS attributes

- high sensitivity to inaccurate velocity
- simple criterion to determine tuned velocities
- readily applicable to 3D data and deviated wells

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Calibration of CRS attributes

- high sensitivity to inaccurate velocity
- simple criterion to determine tuned velocities
- readily applicable to 3D data and deviated wells
- reliable geometrical CRS attributes for

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Calibration of CRS attributes

- high sensitivity to inaccurate velocity
- simple criterion to determine tuned velocities
- readily applicable to 3D data and deviated wells
- reliable geometrical CRS attributes for
 - wavefield decomposition

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Calibration of CRS attributes

- high sensitivity to inaccurate velocity
- simple criterion to determine tuned velocities
- readily applicable to 3D data and deviated wells
- reliable geometrical CRS attributes for
 - wavefield decomposition
 - redatuming

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Calibration of CRS attributes

- high sensitivity to inaccurate velocity
- simple criterion to determine tuned velocities
- readily applicable to 3D data and deviated wells
- reliable geometrical CRS attributes for
 - wavefield decomposition
 - redatuming
 - inversion, e.g. stereo tomography

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Calibration of CRS attributes

- high sensitivity to inaccurate velocity
- simple criterion to determine tuned velocities
- readily applicable to 3D data and deviated wells
- reliable geometrical CRS attributes for
 - wavefield decomposition
 - redatuming
 - inversion, e.g. stereo tomography
 - ▶ ...

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Calibration of CRS attributes

- high sensitivity to inaccurate velocity
- simple criterion to determine tuned velocities
- readily applicable to 3D data and deviated wells
- reliable geometrical CRS attributes for
 - wavefield decomposition
 - redatuming
 - inversion, e.g. stereo tomography

▶ ...

possible combination with hodogram analysis

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Acknowledgments

This work was kindly supported by...

- the sponsors of the Wave Inversion Technology (WIT) Consortium
- Paulsson Geophysical Services Inc. for providing synthetic data and tremendous assistance in questions of VSP imaging

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Velocity calibration and wavefield decomposition

M. von Steht & J. Mann

Overview

Theory CRS stack for VSP FO CRS-Operator Calibration method

Data example Survey description Velocity calibration Decomposition

Conclusions & outlook

・ロ ト ・ 白 ト うへで