True-amplitude CRS-based Kirchhoff time migration for AVO analysis

Miriam Spinner and Jürgen Mann

Wave Inversion Technology (WIT) Consortium Geophysical Institute, University of Karlsruhe (TH)

November 10, 2005

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

onclusions

Overview

Motivation

Principle

Effect of migration aperture on amplitudes

Common-Reflection-Surface stack

Adapted workflow

Extraction of CRS attributes

Velocity model determination

Determination of migration attributes

Synthetic data example

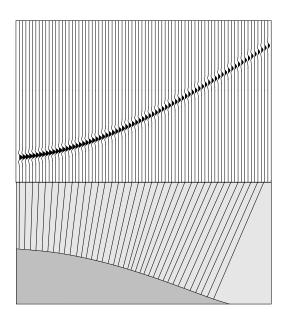
Conclusions

Acknowledgments

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack


Workflow
Attribute extraction
Velocity model
Migration attributes

Jala example

onclusions

Kirchhoff migration

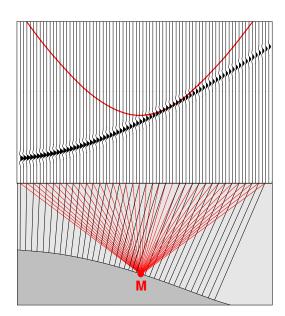
75th SEG Conference, Houston 2005

Spinner & Mann

Motivation Principle

Aperture & amplitudes

CRS stack


Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

Conclusions

Kirchhoff migration

75th SEG Conference, Houston 2005

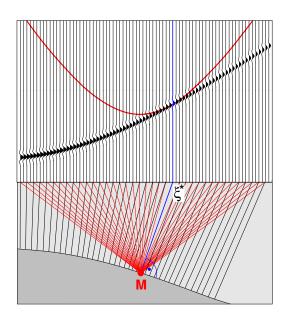
Spinner & Mann

Motivation Principle

Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes


Data example

Conclusions

Kirchhoff migration: stationary point

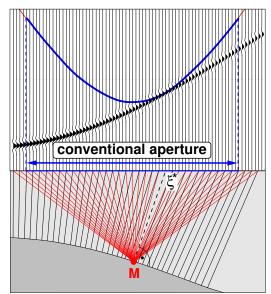
75th SEG Conference, Houston 2005

Spinner & Mann

Motivation Principle

Aperture & amplitudes

CRS stack


Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

Conclusions

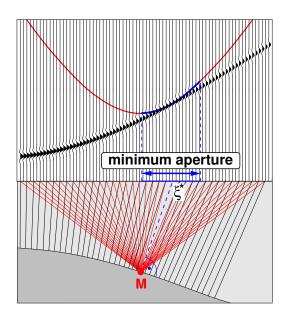
Kirchhoff migration: conventional aperture

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation Principle

Aperture & amplitudes


CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

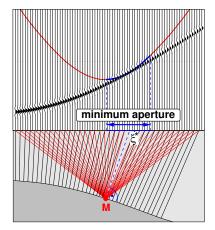
Conclusions

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation Principle

Aperture & amplitudes


CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

Conclusions

Optimum aperture = minimum aperture

- centered around stationary point
- size: projected Fresnel zone

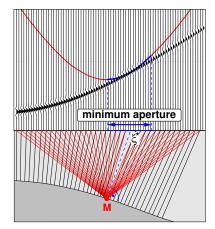
75th SEG Conference, Houston 2005

Spinner & Mann

Motivation Principle

Aperture & amplitudes

CRS stack


Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

Conclusions

Optimum aperture = minimum aperture

- centered around stationary point
- size: projected Fresnel zone

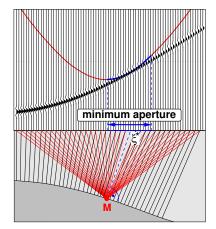
75th SEG Conference, Houston 2005

Spinner & Mann

Motivation Principle

Aperture & amplitudes

CRS stack


Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

Conclusions

Optimum aperture = minimum aperture

- centered around stationary point
- size: projected Fresnel zone

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation Principle

Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

Conclusions

Problems with user-given apertures:

too small underestimated amplitudes and/or loss of steep events

too large undesired noise and/or other events contribute to stack

true-amplitude migration requires sufficiently large apertures

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation Principle

Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Jata example

Conclusions

Problems with user-given apertures:

too small underestimated amplitudes and/or loss of steep events

too large undesired noise and/or other events contribute to stack

true-amplitude migration requires sufficiently large apertures

75th SEG Conference, Houston 2005 Spinner & Mann

Principle
Aperture & amplitudes

Aperture & amplitudes

CRS stack

Motivation

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

onclusions

Problems with user-given apertures:

too small underestimated amplitudes and/or loss of steep events

too large undesired noise and/or other events contribute to stack

true-amplitude migration requires sufficiently large apertures

risk of operator aliasing

anti-alias filters tend to falsify amplitudes

75th SEG Conference, Houston 2005 Spinner & Mann

Principle

Aperture & amplitudes

CRS stack

Motivation

Workflow
Attribute extraction
Velocity model
Migration attributes

Jata example

onclusions

Problems with user-given apertures:

too small underestimated amplitudes and/or loss of steep events

too large undesired noise and/or other events contribute to stack

- true-amplitude migration requires sufficiently large apertures
 - risk of operator aliasing
 - anti-alias filters tend to falsify amplitudes

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Jata example

Conclusions

Problems with user-given apertures:

too small underestimated amplitudes and/or loss of steep events

too large undesired noise and/or other events contribute to stack

- true-amplitude migration requires sufficiently large apertures
 - risk of operator aliasing
 - anti-alias filters tend to falsify amplitudes

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aparture & amplitude

Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Jata example

onclusions

Problems with user-given apertures:

too small underestimated amplitudes and/or loss of steep events

too large undesired noise and/or other events contribute to stack

- true-amplitude migration requires sufficiently large apertures
 - risk of operator aliasing
 - anti-alias filters tend to falsify amplitudes

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

Aperture & ampirtudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Jata example

onclusions

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator

- fully automated coherence-based application
- ▶ output:
 - zero-offset section
 - set of stacking parameters (CRS attributes)

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

onclusions

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
- fully automated coherence-based application
- output:
 - zero-offset section
 - set of stacking parameters (CRS attributes)

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

onclusions

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section
 - set of stacking parameters (CRS attributes)

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

onclusions

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section
 - set of stacking parameters (CRS attributes)

75th SEG Conference, Houston 2005 Spinner & Mann

Principle
Aperture & amplitudes

CRS stack

Motivation

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

onclusions

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- ▶ output:
 - zero-offset section
 - set of stacking parameters (CRS attributes)

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation

Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

onclusions

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output
 - > zero-offset section
 - set of stacking parameters (CRS attributes)

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

onclusions

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section
 - set of stacking parameters (CRS attributes)

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

NO SLACK

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

onclusions

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section
 - set of stacking parameters (CRS attributes)

curvature of normal-incidence-point (NIP) wave

coherence section

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

onclusions

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section
 - ⇒ set of stacking parameters (CRS attributes)
 - emergence angle of
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

onclusions

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section
 - set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave

coherence section

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

onclusions

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section
 - set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave

⇒ coherence section

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

onclusions

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - zero-offset section
 - ⇒ set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

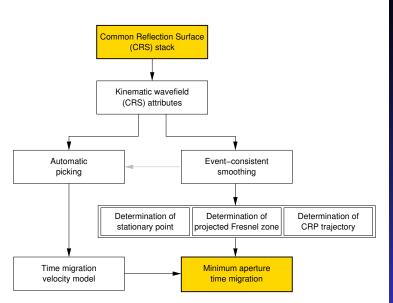
onclusions

- alternative to standard NMO/DMO/stack approach
- second-order approximation of reflection events in offset and midpoint direction
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio
- fully automated coherence-based application
- output:
 - ⇒ zero-offset section
 - set of stacking parameters (CRS attributes)
 - emergence angle α
 - curvature of normal-incidence-point (NIP) wave
 - curvature of normal (N) wave
 - → coherence section

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack


Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

onclusions

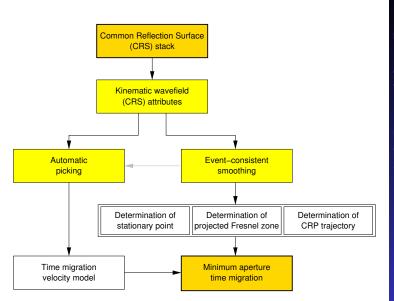
General workflow

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack


Workflow

Attribute extraction Velocity model Migration attributes

Jata example

Conclusion

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

RS stack

Workflow

Attribute extraction Velocity model

Migration attributes

Data example

Conclusions

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 smooth input for determination of PFZ and stationary point
- automated picking of locally coherent events
 input for velocity model determination

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation

Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction

Velocity model
Migration attributes

Data example

conclusions

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 smooth input for determination of PFZ and stationary point
- automated picking of locally coherent events
 input for velocity model determination

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow Attribute extraction

Velocity model Migration attributes

Data example

conclusions

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 smooth input for determination of PFZ and stationary point
- automated picking of locally coherent events
 input for velocity model determination

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model

Migration attributes

otta example

conclusions

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 smooth input for determination of PFZ and stationary point
- automated picking of locally coherent events
 input for velocity model determination

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

onclusions

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 - ⇒ smooth input for determination of PFZ and stationary point
- automated picking of locally coherent events
 input for velocity model determination

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

onclusions

Workflow: extraction of attributes

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 - ⇒ smooth input for determination of PFZ and stationary point
- automated picking of locally coherent events
 input for velocity model determination

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

onclusions

Workflow: extraction of attributes

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 - ⇒ smooth input for determination of PFZ and stationary point
- automated picking of locally coherent events
 - input for velocity model determination

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

onclusions

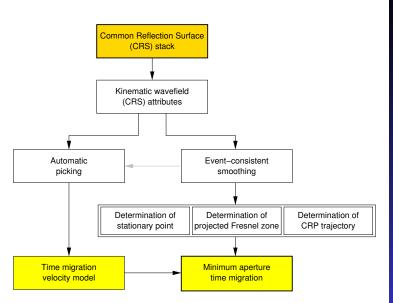
Workflow: extraction of attributes

CRS stack provides kinematic wavefield attributes for each sample

- meaningful only along reflection events
- subject to outliers
- subject to unphysical fluctuations
- attribute-based event-consistent smoothing
 - ⇒ smooth input for determination of PFZ and stationary point
- automated picking of locally coherent events
 - input for velocity model determination

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes


CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

onclusions

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

RS stack

Workflow
Attribute extraction

Velocity model
Migration attributes

Data example

Conclusions

- CRS attributes provide approximation of diffraction response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
- interpolation of velocity model

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

onclusions

- CRS attributes provide approximation of diffraction response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
- interpolation of velocity model

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

RS stack

Workflow Attribute extraction Velocity model

Migration attributes

ata example

onclusions

- CRS attributes provide approximation of diffraction response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex

interpolation of velocity model

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

onclusions

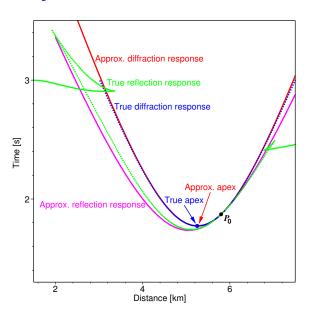
- CRS attributes provide approximation of diffraction response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack


Workflow Attribute extraction

Velocity model Migration attributes

Data example

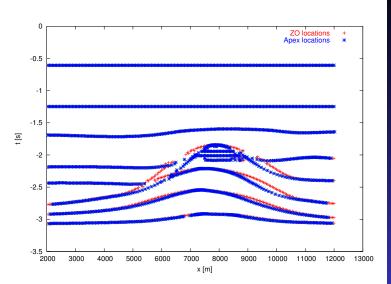
onclusions

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack


Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

Conclusio

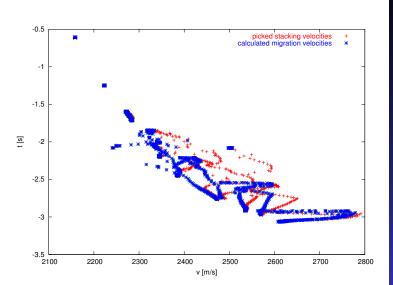
75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow Attribute extraction


Velocity model Migration attributes

Data example

Conclusions

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation Principle

Aperture & amplitudes

CRS stack

Workflow
Attribute extraction

Velocity model
Migration attributes

Data example

Conclusions

- CRS attributes provide approximation of diffraction response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
- interpolation of velocity model
 - weighted polynomial interpolation
 - currently no physical constraints

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

onclusions

- CRS attributes provide approximation of diffraction response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
- interpolation of velocity model
 - weighted polynomial interpolation
 - currently no physical constraints

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

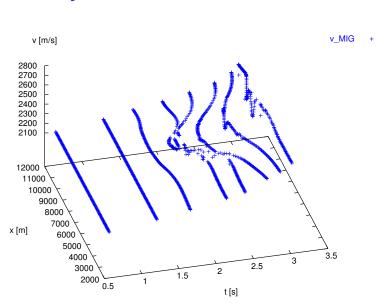
Data example

onclusions

- CRS attributes provide approximation of diffraction response
 - time migration operator
 - estimation of time migration velocity
 - estimation of operator apex
- interpolation of velocity model
 - weighted polynomial interpolation
 - currently no physical constraints

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes


CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

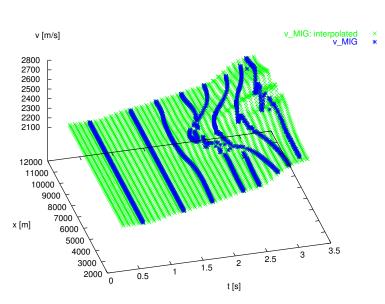
onclusions

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack


Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

onclusions

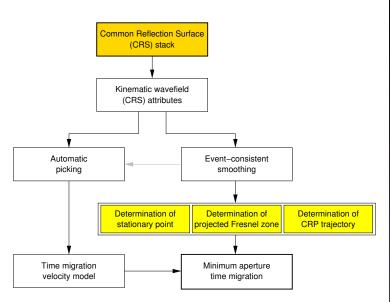
75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes


Data example

Conclusion

Workflow: migration attributes

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

RS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

onclusions

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle or

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

. .

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle a

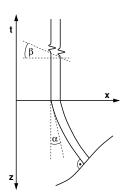
75th SEG Conference, Houston 2005 Spinner & Mann

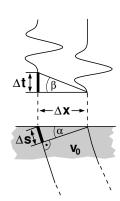
Motivation

Principle
Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes


ata example


onclusions

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle

Aperture & amplitudes

Workflow

Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- lacktriangledown dip of reflection event related to emergence angle lpha
- dip of migration operator can be calculated analytically
- minimum dip difference below given threshold determines stationary point

Projected Fresnel zone for ZO:

directly available from CRS attributes

$$\frac{W_F}{2} = |x_m - x_0| = \frac{1}{\cos \alpha} \sqrt{\frac{v_0 T}{2 \left| \frac{1}{R_N} - \frac{1}{R_{NIP}} \right|}}$$

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes

Jata example

onclusions

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α
- dip of migration operator can be calculated analytically
- minimum dip difference below given threshold determines stationary point

Projected Fresnel zone for ZO:

directly available from CRS attributes

$$\frac{W_F}{2} = |x_m - x_0| = \frac{1}{\cos \alpha} \sqrt{\frac{v_0 T}{2 \left| \frac{1}{R_N} - \frac{1}{R_{NIP}} \right|}}$$

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Jata example

onclusions

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α
- dip of migration operator can be calculated analytically
- minimum dip difference below given threshold determines stationary point

Projected Fresnel zone for ZO:

directly available from CRS attributes

$$\frac{W_F}{2} = |x_m - x_0| = \frac{1}{\cos \alpha} \sqrt{\frac{v_0 T}{2 \left| \frac{1}{R_N} - \frac{1}{R_{NIP}} \right|}}$$

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Jata example

onclusions

Stationary point for ZO:

- migration operator τ_D is tangent to event τ_R
- dip of reflection event related to emergence angle α
- dip of migration operator can be calculated analytically
- minimum dip difference below given threshold determines stationary point

Projected Fresnel zone for ZO:

directly available from CRS attributes

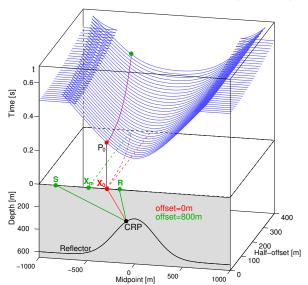
$$\frac{W_F}{2} = |x_m - x_0| = \frac{1}{\cos \alpha} \sqrt{\frac{v_0 T}{2 \left| \frac{1}{R_N} - \frac{1}{R_{NIP}} \right|}}$$

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow Attribute extraction Velocity model Migration attributes


Data example

Conclusions

Common-Reflection-Point trajectory

75th SEG Conference, Houston 2005

Spinner & Mann

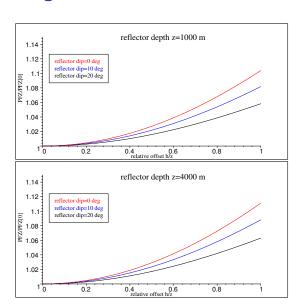
Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

Conclusio


Acknowledgments

extrapolation of stationary point to finite offset

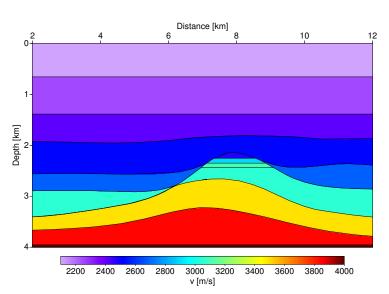
Widening of PFZ size with offset

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack


Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

Conclusion

Original model (V_P)

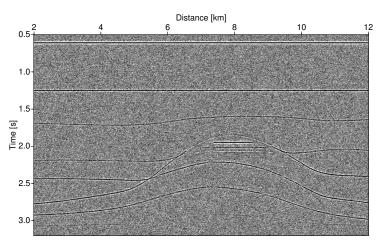
75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes


Data example

Conclusions

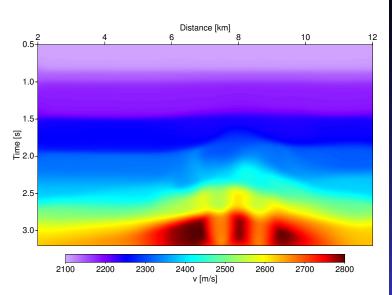
Zero-offset seismogram

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack


Norkflow Attribute extraction Velocity model Migration attributes

Data example

Conclusions

Migration velocity model

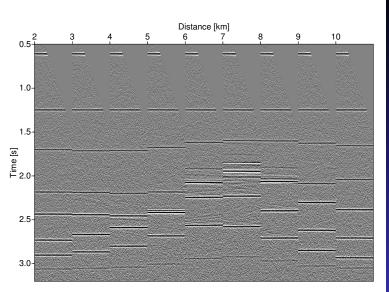
75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes


Data example

Conclusion

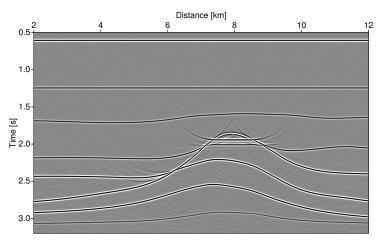
Image gather

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack


Workflow Attribute extraction Velocity model Migration attributes

Data example

conclusions

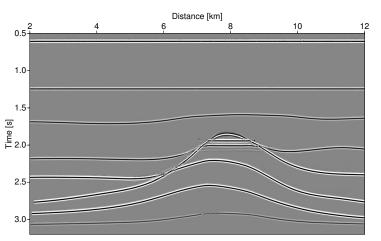
PreSTM stacked section (conventional)

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack


Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

onclusions

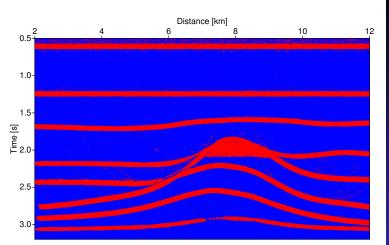
PreSTM stacked section (CRS-based)

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack


Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

onclusions

CRS-based stationary points

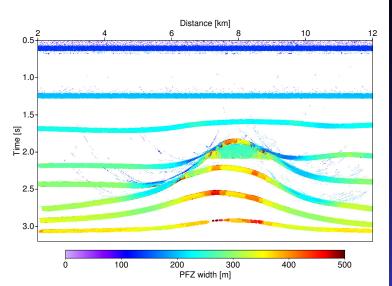
75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes


Data example

Conclusions

CRS-based ZO projected Fresnel zone

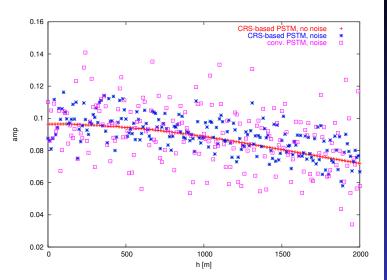
75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes


Data example

onclusions

AVO (first target reflector)

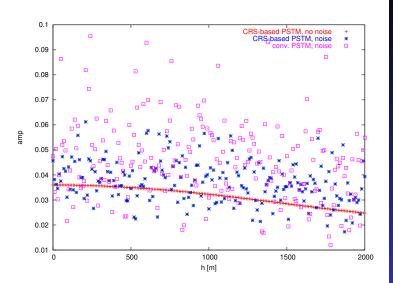
75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes


Data example

Conclusion

AVO (second target reflector)

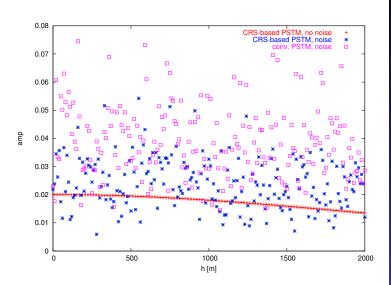
75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes


Data example

Conclusion

AVO (third target reflector)

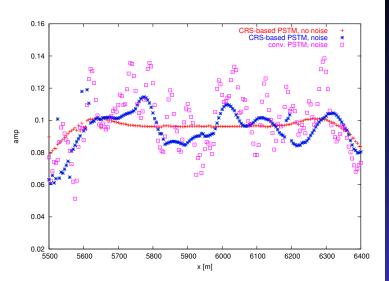
75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes


Data example

onclusion

ZO amplitudes (first target reflector)

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

Conclusio

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - clearer images

more reliable amplitudes

75th SEG Conference, Houston 2005

Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

outu example

Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - clearer images

no operator allasing

more reliable amplitudes

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes

⇒ clearer images

reduction of migration artifacts

no operator aliasing

more reliable amplitudes

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ⇒ clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ⇒ clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ⇒ clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
 - less summing of unwanted contributions from other events
 - less summing of noise

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ⇒ clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
 - less summing of unwanted contributions from other events
 - less summing of noise

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ⇒ clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
 - less summing of unwanted contributions from other events
 - less summing of noise

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

Conclusions

CRS-based minimum aperture time migration concept allows

- simple, highly automated velocity model building
- stationary point & minimum aperture from CRS attributes
 - ⇒ clearer images
 - reduction of migration artifacts
 - no operator aliasing
 - more reliable amplitudes
 - less summing of unwanted contributions from other events
 - less summing of noise

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

Conclusions

Acknowledgments

This work was kindly supported by the sponsors of the Wave Inversion Technology (WIT) Consortium, Karlsruhe, Germany

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

Data example

Conclusions

75th SEG Conference, Houston 2005 Spinner & Mann

Motivation
Principle
Aperture & amplitudes

CRS stack

Workflow
Attribute extraction
Velocity model
Migration attributes

ata example

conclusions

