Parameterization, stacking, and inversion of locally coherent events with the Common-Reflection-Surface Stack method

Jürgen Mann

Wave Inversion Technology Consortium Geophysical Institute, University of Karlsruhe (TH)

June 7, 2009

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ 少々で

Overview

Motivation

Introduction

Traveltime tomography Stacking velocity analysis & Dix inversion Objective

Common-Reflection-Surface stack

Basic concepts Wavefield attributes

Inversion

Inversion with analytic diffraction traveltimes Inversion with model-based diffraction traveltimes

Conclusions

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conventional depth imaging requires a macrovelocity model.

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ ���

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ めへで

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

 analysis of residual moveouts in depth-migrated common-image gathers (CIGs) Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

・ロマ ・回マ うへつ

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 - migration velocity analysis (MVA)

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ めへで

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities
 - stacking velocity analysis & Dix inversion

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities
 - stacking velocity analysis & Dix inversion
- real differences in applicability and complexity!

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities
 - stacking velocity analysis & Dix inversion
- differences in applicability and complexity!Objective:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities
 - stacking velocity analysis & Dix inversion
- differences in applicability and complexity!
 Objective:

combine advantages to obtain initial model

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities
 - stacking velocity analysis & Dix inversion
- real differences in applicability and complexity!

Objective:

combine advantages to obtain initial model

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conventional depth imaging requires a macrovelocity model.

Some common approaches:

- analysis of residual moveouts in depth-migrated common-image gathers (CIGs)
 migration velocity analysis (MVA)
- direct inversion of traveltimes (and slopes) picked in prestack data
 - traveltime tomography (stereo tomography)
- inversion based on stacking velocities
 - stacking velocity analysis & Dix inversion
- real differences in applicability and complexity!

Objective:

combine advantages to obtain initial model

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろく(~

Basic properties:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲母▼ ろ∢⊙

Basic properties:

requires extensive picking in prestack data

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろく(~

Basic properties:

- requires extensive picking in prestack data
 - often difficult, especially in 3-D

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

・ロ・ ・ 白 ・ うへで

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

・ロマ ・日マ うくで

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

・ロマ ・回マ うへつ

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ めへで

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to
 - chosen model description (smooth, blocky, ...)

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to
 - chosen model description (smooth, blocky, ...)
 - forward-modeling method

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to
 - chosen model description (smooth, blocky, ...)
 - forward-modeling method

Extensions:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to
 - chosen model description (smooth, blocky, ...)
 - forward-modeling method

Extensions:

picking of *locally coherent* reflection events: traveltime plus local dip Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Basic properties:

- requires extensive picking in prestack data
 often difficult, especially in 3-D
- optimum model matches forward-modeled and picked traveltimes
- no stacking and traveltime approximations required
- limitations due to
 - chosen model description (smooth, blocky, ...)
 - forward-modeling method

Extensions:

- picking of *locally coherent* reflection events: traveltime plus local dip
 - stereo tomography

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろく(?)

Stacking velocity analysis:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲母▼ ろ∢⊙

Stacking velocity analysis:

 coherence analysis along second-order CMP traveltime approximation Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ もの◆

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
 - locally coherent event

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

・ロマ ・回マ うへの

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
 locally coherent event
- coarse picking in velocity spectra

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろく(~

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
 - locally coherent event
- coarse picking in velocity spectra
 simplified picking

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

・ロマ ・回マ うへの

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
 - locally coherent event
- coarse picking in velocity spectra
 simplified picking
- interpolation

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

・ロ・ ・ 白 ・ うへで

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
 - locally coherent event
- coarse picking in velocity spectra
 simplified picking
- interpolation smooth stacking velocity model

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

●□▶ ●□▼ シタ(で)

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
 - locally coherent event
- coarse picking in velocity spectra
 simplified picking
- interpolation smooth stacking velocity model

Dix inversion:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ めへで
Velocity analysis and Dix inversion

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
 - locally coherent event
- coarse picking in velocity spectra
 simplified picking
- interpolation smooth stacking velocity model

Dix inversion:

► assumption of 1-D model, $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{stack}}$ or $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{DMO}}$

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Velocity analysis and Dix inversion

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
 - locally coherent event
- coarse picking in velocity spectra
 simplified picking
- interpolation smooth stacking velocity model

Dix inversion:

- ► assumption of 1-D model, $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{stack}}$ or $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{DMO}}$
- conversion of RMS velocities to interval velocities

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Velocity analysis and Dix inversion

Stacking velocity analysis:

- coherence analysis along second-order CMP traveltime approximation
 - locally coherent event
- coarse picking in velocity spectra
 simplified picking
- interpolation smooth stacking velocity model

Dix inversion:

- ► assumption of 1-D model, $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{stack}}$ or $v_{\text{RMS}} \stackrel{\text{def}}{=} v_{\text{DMO}}$
- conversion of RMS velocities to interval velocities
- fails for significant dip/curvature

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろく(~

Initial model beyond Dix inversion:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろく(?)

Initial model beyond Dix inversion:

no picking in prestack data

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Initial model beyond Dix inversion:

- no picking in prestack data
- retain coherence based analysis

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲母▼ めへで

Initial model beyond Dix inversion:

- no picking in prestack data
- retain coherence based analysis

Required tools:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ 少々や

Initial model beyond Dix inversion:

- no picking in prestack data
- retain coherence based analysis

Required tools:

a generalized stacking velocity analysis

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろくで

Initial model beyond Dix inversion:

- no picking in prestack data
- retain coherence based analysis

Required tools:

a generalized stacking velocity analysis
 Common-Reflection-Surface Stack

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ 少々で

Initial model beyond Dix inversion:

- no picking in prestack data
- retain coherence based analysis

Required tools:

- a generalized stacking velocity analysis
 Common-Reflection-Surface Stack
- a suitable inversion method

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Initial model beyond Dix inversion:

- no picking in prestack data
- retain coherence based analysis

Required tools:

- a generalized stacking velocity analysis
 Common-Reflection-Surface Stack
- a suitable inversion method
 - NIP-wave tomography

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

 $\bullet \square \land \bullet \bullet \blacksquare \land \bullet \circ \land \circ \circ \bullet$

Initial model beyond Dix inversion:

- no picking in prestack data
- retain coherence based analysis

Required tools:

- a generalized stacking velocity analysis
 Common-Reflection-Surface Stack
- a suitable inversion method
 - NIP-wave tomography

Final model beyond second-order approximation:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Initial model beyond Dix inversion:

- no picking in prestack data
- retain coherence based analysis

Required tools:

- a generalized stacking velocity analysis
 Common-Reflection-Surface Stack
- a suitable inversion method
 - NIP-wave tomography

Final model beyond second-order approximation:

 tomography with model-based diffraction traveltimes Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろく(~

Generalization of stacking velocity analysis:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろく(~

Generalization of stacking velocity analysis:

second-order approximation of traveltime

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Generalization of stacking velocity analysis:

second-order approximation of traveltime

$$t^{2}(\Delta \mathbf{x}, \mathbf{h}) = (t_{0} + 2\mathbf{p} \cdot \Delta \mathbf{x})^{2} + 2t_{0} \left(\Delta \mathbf{x}^{T} \mathbf{M}_{\mathbf{x}} \Delta \mathbf{x} + \mathbf{h}^{T} \mathbf{M}_{h} \mathbf{h} \right)$$

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ めぐら

Generalization of stacking velocity analysis:

second-order approximation of traveltime

$$t^{2}(\Delta \mathbf{x}, \mathbf{h}) = (t_{0} + 2\mathbf{p} \cdot \Delta \mathbf{x})^{2} + 2t_{0} \left(\Delta \mathbf{x}^{T} \mathbf{M}_{x} \Delta \mathbf{x} + \mathbf{h}^{T} \mathbf{M}_{h} \mathbf{h} \right)$$

$$\mathbf{p} = \frac{1}{2} \partial t / \partial \mathbf{x} \Big|_{(\Delta \mathbf{x} = \mathbf{0}, \mathbf{h} = \mathbf{0})}$$

$$\mathbf{M}_{h} = \left. \frac{1}{2} \partial^{2} t / \partial \mathbf{h}^{2} \right|_{(\Delta \mathbf{x} = \mathbf{0}, \mathbf{h} = \mathbf{0})}$$

$$\mathbf{M}_{\mathbf{X}} = \left. \frac{1}{2} \partial^2 t / \partial \mathbf{X}^2 \right|_{(\Delta \mathbf{X} = \mathbf{0}, \mathbf{h} = \mathbf{0})}$$

 t_0 zero-offset traveltime **h** source/receiver offset Δx midpoint displacement

p horizontal slowness

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack

Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Generalization of stacking velocity analysis:

second-order approximation of traveltime

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Generalization of stacking velocity analysis:

- second-order approximation of traveltime
- fully automated coherence-based application

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

・ロマ ・回マ うへの

Generalization of stacking velocity analysis:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

・ロマ ・回マ うへの

Generalization of stacking velocity analysis:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 - no pulse stretch, high resolution

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

・ロマ ・回マ うへの

Generalization of stacking velocity analysis:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 no pulse stretch, high resolution
- spatial stacking operator

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Generalization of stacking velocity analysis:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 no pulse stretch, high resolution
- spatial stacking operator
 - much more prestack traces used

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

・ロ・ ・ 白 ・ うへで

Generalization of stacking velocity analysis:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 no pulse stretch, high resolution
- spatial stacking operator
 - much more prestack traces used
 - enhanced signal/noise ratio

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

・ロ・ ・ 白 ・ うへで

Generalization of stacking velocity analysis:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 no pulse stretch, high resolution
- spatial stacking operator
 much more prostock traces
 - much more prestack traces used
 - enhanced signal/noise ratio
- additional stacking parameters related to first and second traveltime derivatives

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Generalization of stacking velocity analysis:

- second-order approximation of traveltime
- fully automated coherence-based application
- high-density analysis
 - no pulse stretch, high resolution
- spatial stacking operator
 much more prestack traces used
 appapaed signal/paise ratio
 - enhanced signal/noise ratio
- additional stacking parameters related to first and second traveltime derivatives
 geometrical interpretation

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Geometrical interpretation of stacking parameters:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲母▼ ろ∢⊙

Geometrical interpretation of stacking parameters:

Emergence direction and curvatures of hypothetical wavefronts:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろく(?)

Geometrical interpretation of stacking parameters:

Emergence direction and curvatures of hypothetical wavefronts:

exploding point source

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

・ロマ ・日マ うくで

Geometrical interpretation of stacking parameters:

Emergence direction and curvatures of hypothetical wavefronts:

exploding point source
 normal-incidence-point (NIP) wave

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲母▼ 少々で

Geometrical interpretation of stacking parameters:

Emergence direction and curvatures of hypothetical wavefronts:

- exploding point source
 normal-incidence-point (NIP) wave
- exploding reflector

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Geometrical interpretation of stacking parameters:

Emergence direction and curvatures of hypothetical wavefronts:

- exploding point source
 normal-incidence-point (NIP) wave
- exploding reflector reflector

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

slowness vector and curvature matrices!

(Höcht, 2002)

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲母▼ 釣∢?

Reformulation of traveltime formula

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろく(~
Reformulation of traveltime formula

In terms of traveltime derivatives:

$$t^{2}(\Delta \mathbf{x}, \mathbf{h}) = (t_{0} + 2\mathbf{p} \cdot \Delta \mathbf{x})^{2} + 2t_{0} \left(\Delta \mathbf{x}^{T} \mathbf{M}_{x} \Delta \mathbf{x} + \mathbf{h}^{T} \mathbf{M}_{h} \mathbf{h} \right)$$

t₀

h

 $\Delta \mathbf{X}$

р

$$\mathbf{p} = \frac{1}{2} \partial t / \partial \mathbf{x} \Big|_{(\Delta \mathbf{x} = \mathbf{0}, \mathbf{h} = \mathbf{0})}$$
$$\mathbf{M}_{\mathbf{h}} = \frac{1}{2} \partial^2 t / \partial \mathbf{h}^2 \Big|_{(\Delta \mathbf{x} = \mathbf{0}, \mathbf{h} = \mathbf{0})}$$

 $\mathbf{M}_{\mathbf{X}} = \left. \frac{1}{2} \partial^2 t / \partial \mathbf{X}^2 \right|_{(\Delta \mathbf{X} = \mathbf{0}, \mathbf{h} = \mathbf{0})}$

zero-offset traveltime source/receiver offset midpoint displacement horizontal slowness Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Reformulation of traveltime formula

In terms of kinematic wavefield attributes:

$$t^{2}(\Delta \mathbf{x}, \mathbf{h}) = (t_{0} + 2\mathbf{p} \cdot \Delta \mathbf{x})^{2} + 2t_{0} \left(\Delta \mathbf{x}^{T} \mathbf{M}_{x} \Delta \mathbf{x} + \mathbf{h}^{T} \mathbf{M}_{h} \mathbf{h} \right)$$

$$\mathbf{p} = \frac{1}{v_0} (\sin \alpha \cos \psi, \sin \alpha \sin \psi)^T$$

$$\mathbf{M}_h = \frac{1}{v_0} \mathbf{D} \mathbf{K}_{\text{NIP}} \mathbf{D}^T$$

 $\mathbf{M}_{\mathbf{X}} = \frac{1}{v_0} \mathbf{D} \mathbf{K}_{\mathbf{N}} \mathbf{D}^{T}$

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Reformulation of traveltime formula

In terms of kinematic wavefield attributes:

$$t^{2}(\Delta \mathbf{x}, \mathbf{h}) = (t_{0} + 2\mathbf{p} \cdot \Delta \mathbf{x})^{2} + 2t_{0} \left(\Delta \mathbf{x}^{T} \mathbf{M}_{x} \Delta \mathbf{x} + \mathbf{h}^{T} \mathbf{M}_{h} \mathbf{h} \right)$$

$$\mathbf{p} = \frac{1}{v_0} (\sin \alpha \cos \psi, \sin \alpha \sin \psi)^7$$

$$\mathbf{M}_h = \frac{1}{v_0} \mathbf{D} \mathbf{K}_{\text{NIP}} \mathbf{D}^T$$

$$\mathbf{M}_{\mathbf{X}} = \frac{1}{v_0} \mathbf{D} \mathbf{K}_{\mathrm{N}} \mathbf{D}^7$$

 α, ψ D

Vo

azimuth & emergence angle of normal ray transformation ray-centered/global coordinates curvature matrix of NIP/normal wavefront $\mathbf{K}_{NIP}, \mathbf{K}_{N}$ near-surface velocity

t₀

h

 $\Delta \mathbf{X}$

р

zero-offset traveltime

source/receiver offset

midpoint displacement

horizontal slowness

Parameterization. stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack **Basic concepts** Wavefield attributes

Analytic approach Model-based approach

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach

Model-based approach

▲□▶ ▲母▼ ろ∢⊙

CRS attributes are well-suited for inversion NIP-wave tomography

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

・ロマ ・回マ うへの

CRS attributes are well-suited for inversion

- NIP-wave tomography
 - + Independent picks

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

・ロ・ ・ 白 ・ うへで

- CRS attributes are well-suited for inversion
 - NIP-wave tomography
 - + Independent picks
 - + Picking only in stacked section

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion

Analytic approach Model-based approach

Conclusions

・ロマ ・回マ うへの

- CRS attributes are well-suited for inversion
 - NIP-wave tomography
 - + Independent picks
 - + Picking only in stacked section
 - + Highly automated

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion

Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろくで

- CRS attributes are well-suited for inversion
 - NIP-wave tomography
 - + Independent picks
 - + Picking only in stacked section
 - + Highly automated
 - + Vivid inversion scheme

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion

Analytic approach Model-based approach

Conclusions

・ロマ ・回マ うへの

CRS attributes are well-suited for inversion

- NIP-wave tomography
 - + Independent picks
 - + Picking only in stacked section
 - + Highly automated
 - + Vivid inversion scheme
 - Inherent restriction to second order

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ 少々で

CRS attributes are well-suited for inversion

- NIP-wave tomography
 - + Independent picks
 - + Picking only in stacked section
 - + Highly automated
 - + Vivid inversion scheme
 - Inherent restriction to second order
- Proposed two-step strategy

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion

Analytic approach Model-based approach

CRS attributes are well-suited for inversion

- NIP-wave tomography
 - + Independent picks
 - + Picking only in stacked section
 - + Highly automated
 - + Vivid inversion scheme
 - Inherent restriction to second order
- Proposed two-step strategy
 - NIP-wave tomography for high-quality initial model

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion

Analytic approach Model-based approach

CRS attributes are well-suited for inversion

- NIP-wave tomography
 - + Independent picks
 - + Picking only in stacked section
 - + Highly automated
 - + Vivid inversion scheme
 - Inherent restriction to second order
- Proposed two-step strategy
 - NIP-wave tomography for high-quality initial model
 - Drop analytic approximation, switch to model-based diffraction traveltimes

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion

Analytic approach Model-based approach

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

▲□▶ ▲□▶ ろくゆ

Diffraction traveltimes well suited for inversion:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

▲□▶ ▲□▶ ろくゆ

- Diffraction traveltimes well suited for inversion:
 - + no dependence on reflector structure

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

▲□ ▶ ▲□ ▶ ろくで

- Diffraction traveltimes well suited for inversion:
 - + no dependence on reflector structure
 - + very simple imaging condition

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

▲□▶ ▲□▶ シタ(や

- Diffraction traveltimes well suited for inversion:
 - + no dependence on reflector structure
 - + very simple imaging condition
 - Diffraction events only present for true diffractors!

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

- Diffraction traveltimes well suited for inversion:
 - + no dependence on reflector structure
 - + very simple imaging condition
 - Diffraction events only present for true diffractors!
- NIP-wave theorem:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

▲□▶ ▲□▶ シタ(や

- Diffraction traveltimes well suited for inversion:
 - + no dependence on reflector structure
 - + very simple imaging condition
 - Diffraction events only present for true diffractors!
- NIP-wave theorem:
 - up to second order: zero-offset diffraction traveltime = CMP traveltime

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

・ロ・ ・ 白 ・ うへで

- Diffraction traveltimes well suited for inversion:
 - + no dependence on reflector structure
 - + very simple imaging condition
 - Diffraction events only present for true diffractors!
- NIP-wave theorem:
 - up to second order: zero-offset diffraction traveltime = CMP traveltime
 - CMP reflection traveltimes available from the data

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Analytic approach Model-based approach

- Diffraction traveltimes well suited for inversion:
 - + no dependence on reflector structure
 - + very simple imaging condition
 - Diffraction events only present for true diffractors!
- NIP-wave theorem:
 - up to second order: zero-offset diffraction traveltime = CMP traveltime
 - CMP reflection traveltimes available from the data
 - approximate description of hypothetical diffraction traveltimes for all offsets

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

- Diffraction traveltimes well suited for inversion:
 - + no dependence on reflector structure
 - + very simple imaging condition
 - Diffraction events only present for true diffractors!
- NIP-wave theorem:
 - up to second order: zero-offset diffraction traveltime = CMP traveltime
 - CMP reflection traveltimes available from the data
 - approximate description of hypothetical diffraction traveltimes for all offsets

data-derived second-order diffraction traveltimes

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

- Diffraction traveltimes well suited for inversion:
 - + no dependence on reflector structure
 - + very simple imaging condition
 - Diffraction events only present for true diffractors!
- NIP-wave theorem:
 - up to second order: zero-offset diffraction traveltime = CMP traveltime
 - CMP reflection traveltimes available from the data
 - approximate description of hypothetical diffraction traveltimes for all offsets
 - data-derived second-order diffraction traveltimes
 - analytic description

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

▲□▼ ▲□▼ ろく(?)

NIP-wave tomography (2D)

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

▲□▼ ▲□▼ ろ∢⊙

NIP-wave tomography (2D)

data space

$$\left(x_0, t_0, \frac{\partial t}{\partial x}\Big|_{(x_0, h=0)}, \frac{\partial^2 t}{\partial h^2}\Big|_{(x_0, h=0)}\right)_i$$

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ ろ∢?

NIP-wave tomography (2D)

data space

$$\left(x_0, t_0, \frac{\partial t}{\partial x}\Big|_{(x_0, h=0)}, \frac{\partial^2 t}{\partial h^2}\Big|_{(x_0, h=0)}\right)_i$$

model space

$$(x,z,\Theta_0)_i$$
; $v(x,z)$

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

NIP-wave tomography (2D)

data space

$$\left(x_0, t_0, \frac{\partial t}{\partial x}\Big|_{(x_0, h=0)}, \frac{\partial^2 t}{\partial h^2}\Big|_{(x_0, h=0)}\right)_i$$

model space

$$(x, z, \Theta_0)_i$$
; $v(x, z)$

 inversion of analytic diffraction traveltimes plus normal rays Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

・ロマ ・日マ うくで

NIP-wave tomography (2D)

data space

$$\left(x_0, t_0, \frac{\partial t}{\partial x}\Big|_{(x_0, h=0)}, \frac{\partial^2 t}{\partial h^2}\Big|_{(x_0, h=0)}\right)_i$$

model space

$$(x,z,\Theta_0)_i$$
 ; $v(x,z)$

- inversion of analytic diffraction traveltimes plus normal rays
- geometric interpretation: normal-incidence-point (NIP) wave

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

NIP-wave tomography (2D)

data space

$$\left(x_0, t_0, \frac{\partial t}{\partial x}\Big|_{(x_0, h=0)}, \frac{\partial^2 t}{\partial h^2}\Big|_{(x_0, h=0)}\right)_i$$

model space

$$(x,z,\Theta_0)_i$$
 ; $v(x,z)$

- inversion of analytic diffraction traveltimes plus normal rays
- geometric interpretation: normal-incidence-point (NIP) wave
- straightforward extension to 3-D

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Principle of NIP-wave tomography

t

Ζ

Х

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

▲□▶ ▲母 ▶ 少々で

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

・ロ を 《 母 を ろくで

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

wir-

▲□▼ ▲□▼ ろ∢⊙

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

▲□▼ ▲□▼ ろ∢⊙

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

▲□ ▶ ▲□ ▶ ろくで

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

|□ ▶ ▲酉 ▶ 少々で

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

-□▶ →酉▶ 少へで

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

(日) (日) (日)

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

whr

うゃう ふゆ ・ トロー

Principle of NIP-wave tomography

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

▲□▶ ▲□▶ めへで

Principle of NIP-wave tomography

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

Basic concepts Wavefield attributes

Analytic approach Model-based approach

Principle of NIP-wave tomography sta

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

▲□▶ ▲□▶ ���

Principle of NIP-wave tomography

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

▲□ ▶ ▲□ ▶ ろへで

Principle of NIP-wave tomography

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

▲□▶ ▲□▶ ろく⊙

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

・ロト ・日 ・ うへで

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

▲□▼ ▲□▼ ろく(?)

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

▲□▶ ▲□▶ ろくゆ

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

▲□▼ ▲□▼ ろく(?)

with the CRS Stack method Jürgen Mann Motivation

Parameterization,

stacking & inversion of locally coherent events

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

-□▶ →酉▶ 少へで

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

・ロ を 《 中 を う へ ()

Principle of NIP-wave tomography

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

(日) (日) (日)

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

□ ▶ ▲ 母 ▶ め < (~

Motivation Introduction Travelt. tomography Velocity analysis

Parameterization,

stacking & inversion of locally coherent events with the CRS Stack method Jürgen Mann

Objective

Basic concepts Wavefield attributes

Analytic approach Model-based approach

Principle of NIP-wave tomography

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

▲□▶ ▲□▶ めへで

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusion

▲□▶ ▲□▶ 少々で

Basic idea:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

・ロ・ ・ 白 ・ うへで

Basic idea:

Generalization of data space beyond second order

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ ろ∢で

Basic idea:

- Generalization of data space beyond second order
 - exact, model-based diffraction traveltimes instead of data-derived analytic approximation

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based approach

Conclusions

・ロマ ・日マ うくで

Basic idea:

- Generalization of data space beyond second order
 - exact, model-based diffraction traveltimes instead of data-derived analytic approximation
 - → local flattening of common-image gathers (CIGs)

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Basic idea:

- Generalization of data space beyond second order
 - exact, model-based diffraction traveltimes instead of data-derived analytic approximation
 - ➡ local flattening of common-image gathers (CIGs)
 - apply Fermat's principle for any offset instead of normal ray, only

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Basic idea:

- Generalization of data space beyond second order
 - exact, model-based diffraction traveltimes instead of data-derived analytic approximation
 - ➡ local flattening of common-image gathers (CIGs)
 - apply Fermat's principle for any offset instead of normal ray, only
- Convenient domain: prestack data migrated to residual time

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Basic idea:

- Generalization of data space beyond second order
 - exact, model-based diffraction traveltimes instead of data-derived analytic approximation
 - ➡ local flattening of common-image gathers (CIGs)
 - apply Fermat's principle for any offset instead of normal ray, only
- Convenient domain: prestack data migrated to residual time
- Convenient parameters: scattering angle Φ and illumination angle Θ

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Scattering angle Φ and illumination angle Θ

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusion

▲□▶ ▲□▶ ろくゆ

(Klüver, 2007)

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusion

▲□▶ ▲母▼ ろく⊙

Observations:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろく(~

Observations:

• For consistent model $\Delta t(\Phi) \equiv \mathbf{0} \forall \Phi$

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▼ シペペ

Observations:

- For consistent model $\Delta t(\Phi) \equiv 0 \forall \Phi$
- initial model based on data-derived diffraction traveltime
 - \blacktriangleright residual misfits $\Delta t(\Phi)$ scatter around zero
 - ► local migration to residual time sufficient

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Observations:

- For consistent model $\Delta t(\Phi) \equiv 0 \forall \Phi$
- initial model based on data-derived diffraction traveltime
 - \blacktriangleright residual misfits $\Delta t(\Phi)$ scatter around zero
 - ➡ local migration to residual time sufficient
- CRS-stacked trace available as pilot trace

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲母▼ めへで

Observations:

- For consistent model $\Delta t(\Phi) \equiv 0 \forall \Phi$
- initial model based on data-derived diffraction traveltime
 - \blacktriangleright residual misfits $\Delta t(\Phi)$ scatter around zero
 - ► local migration to residual time sufficient
- CRS-stacked trace available as pilot trace
- ► Determination of ∆t (Φ) by cross-correlation with subset of pilot trace

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Common-scattering-angle gather in residual time

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusion

▲□▶ ▲□▶ ろく⊙
Common-scattering-angle gather in residual time

Observations:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろく(~

Common-scattering-angle gather in residual time

Observations:

For consistent model

$$\left. \frac{\partial}{\partial \Theta} \Delta t(\Phi) \right|_{\Delta \Theta = 0} \equiv 0 \text{ for any fixed } \Phi$$

Fermat's principle of stationary traveltime

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ 少々で

Common-scattering-angle gather in residual time

Observations:

For consistent model

$$\left. \frac{\partial}{\partial \Theta} \Delta t(\Phi) \right|_{\Delta \Theta = 0} \equiv 0 \text{ for any fixed } \Phi$$

Fermat's principle of stationary traveltime

 Determination of this dip by coherence analysis along plane operator Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Iteratively

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▼ シペペ

Iteratively

 calculate diffraction traveltimes for current NIPs and velocities Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ めへで

Iteratively

- calculate diffraction traveltimes for current NIPs and velocities
- perform local migration to residual time

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

・ロマ ・日マ うくで

Iteratively

- calculate diffraction traveltimes for current NIPs and velocities
- perform local migration to residual time
- determine traveltime misfits in CIGs by cross-correlation

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Iteratively

- calculate diffraction traveltimes for current NIPs and velocities
- perform local migration to residual time
- determine traveltime misfits in CIGs by cross-correlation
- determine traveltime dip by coherence analysis

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろくで

Iteratively

- calculate diffraction traveltimes for current NIPs and velocities
- perform local migration to residual time
- determine traveltime misfits in CIGs by cross-correlation
- determine traveltime dip by coherence analysis
- calculate Fréchet derivatives

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Iteratively

- calculate diffraction traveltimes for current NIPs and velocities
- perform local migration to residual time
- determine traveltime misfits in CIGs by cross-correlation
- determine traveltime dip by coherence analysis
- calculate Fréchet derivatives
- update model, i. e., velocities and NIPs

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろく(~

 Common-Reflection-Surface stack: parameterization of locally coherent events Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▼ ▲□▼ ろく(?)

- Common-Reflection-Surface stack: parameterization of locally coherent events
- Efficient second-order NIP-wave inversion: matching of wavefield attributes, only

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

・ロマ ・回マ うへつ

- Common-Reflection-Surface stack: parameterization of locally coherent events
- Efficient second-order NIP-wave inversion: matching of wavefield attributes, only
- Inversion beyond second-order approximation: matching of prestack data in each iteration

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

・ロマ ・回マ うへつ

- Common-Reflection-Surface stack: parameterization of locally coherent events
- Efficient second-order NIP-wave inversion: matching of wavefield attributes, only
- Inversion beyond second-order approximation: matching of prestack data in each iteration
 far more demanding!

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

- Common-Reflection-Surface stack: parameterization of locally coherent events
- Efficient second-order NIP-wave inversion: matching of wavefield attributes, only
- Inversion beyond second-order approximation: matching of prestack data in each iteration
 far more demanding!
- Facilitated by superior initial model:

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲□▶ 少々で

- Common-Reflection-Surface stack: parameterization of locally coherent events
- Efficient second-order NIP-wave inversion: matching of wavefield attributes, only
- Inversion beyond second-order approximation: matching of prestack data in each iteration
 far more demanding!
- Facilitated by superior initial model: small residuals scattered around zero

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

- Common-Reflection-Surface stack: parameterization of locally coherent events
- Efficient second-order NIP-wave inversion: matching of wavefield attributes, only
- Inversion beyond second-order approximation: matching of prestack data in each iteration
 far more demanding!
- Facilitated by superior initial model: small residuals scattered around zero
 - local migration to residual time sufficient

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

・ロト ・日 ・ うへで

- Common-Reflection-Surface stack: parameterization of locally coherent events
- Efficient second-order NIP-wave inversion: matching of wavefield attributes, only
- Inversion beyond second-order approximation: matching of prestack data in each iteration
 far more demanding!
- Facilitated by superior initial model: small residuals scattered around zero
 - local migration to residual time sufficient
 - little ambiguity

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Acknowledgments

This work was kindly supported by the

- Federal Ministry of Education and Research, Germany, program GEOTECHNOLOGIEN
- sponsors of the Wave Inversion Technology (WIT) Consortium, Hamburg, Germany

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

nversion Analytic approach Model-based app<u>roach</u>

Parameterization, stacking & inversion of locally coherent events with the CRS Stack method

Jürgen Mann

Motivation

Introduction Travelt. tomography Velocity analysis Objective

CRS stack Basic concepts Wavefield attributes

Inversion Analytic approach Model-based approach

Conclusions

▲□▶ ▲酉 ▶ 少々で