Seismic Reflection Imaging – from Time to Depth

Jürgen Mann

Wave Inversion Technology (WIT) Consortium Geophysical Institute, University of Karlsruhe (TH)

March 10, 2004

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Overview

- The task of reflection seismics
- **Data acquisition**
- Time domain imaging
- Macrovelocity model determination
- **Time-depth transformation**
- **Conclusions & outlook**
- Acknowledgments
- Announcement

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

▲□▶ ▲□▶ ���

explore subsurface with elastic waves

- controlled source at known position and source time
- many receivers at known positions
- perform many experiments to obtain highly redundant data
- generate image of subsurface

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- explore subsurface with elastic waves
 - controlled source at known position and source time
 - many receivers at known positions
 - perform many experiments to obtain highly redundant data
- generate image of subsurface

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- explore subsurface with elastic waves
 - controlled source at known position and source time
 - many receivers at known positions
 - perform many experiments to obtain highly redundant data
- generate image of subsurface
 - determine structure
 actionate objected proceedings of second second
 - estimate physical properties of subsurface

acquired data in time domain
?

structural image in depth domain

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- explore subsurface with elastic waves
 - controlled source at known position and source time
 - many receivers at known positions
 - perform many experiments to obtain highly redundant data
- generate image of subsurface
 - determine structure
 - estimate physical properties of subsurface

?

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- explore subsurface with elastic waves
 - controlled source at known position and source time
 - many receivers at known positions
 - perform many experiments to obtain highly redundant data

generate image of subsurface

- determine structure
- estimate physical properties of subsurface

atructural image in depth demain

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- explore subsurface with elastic waves
 - controlled source at known position and source time
 - many receivers at known positions
 - perform many experiments to obtain highly redundant data
- generate image of subsurface
 - determine structure
 - estimate physical properties of subsurface

acquired data in time domain

structural image in depth domain

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- explore subsurface with elastic waves
 - controlled source at known position and source time
 - many receivers at known positions
 - perform many experiments to obtain highly redundant data
- generate image of subsurface
 - determine structure
 - estimate physical properties of subsurface

acquired data in time domain

structural image in depth domain

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- explore subsurface with elastic waves
 - controlled source at known position and source time
 - many receivers at known positions
 - perform many experiments to obtain highly redundant data
- generate image of subsurface
 - determine structure
 - estimate physical properties of subsurface

acquired data in time domain

structural image in depth domain

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- explore subsurface with elastic waves
 - controlled source at known position and source time
 - many receivers at known positions
 - perform many experiments to obtain highly redundant data
- generate image of subsurface
 - determine structure
 - estimate physical properties of subsurface

acquired data in time domain

structural image in depth domain

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- explore subsurface with elastic waves
 - controlled source at known position and source time
 - many receivers at known positions
 - perform many experiments to obtain highly redundant data
- generate image of subsurface
 - determine structure
 - estimate physical properties of subsurface

acquired data in time domain

structural image in depth domain

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- explore subsurface with elastic waves
 - controlled source at known position and source time
 - many receivers at known positions
 - perform many experiments to obtain highly redundant data
- generate image of subsurface
 - determine structure
 - estimate physical properties of subsurface

acquired data in time domain

? **į** seismic reflection imaging

structural image in depth domain

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Iand seismics

- explosives
- vibrators
- (accelerated) drop weights
- marine seismics

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

▲□▶ ▲□▶ ろへで

- Iand seismics
 - explosives

- vibrators
- (accelerated) drop weights
- marine seismics

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- land seismics
 - explosives
 - vibrators

- (accelerated) drop weights
- marine seismics
 - water guns
 - air guns

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- land seismics
 - explosives
 - vibrators
 - (accelerated) drop weights

marine seismics

water guns

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- Iand seismics
 - explosives
 - vibrators
 - (accelerated) drop weights

marine seismics

- water guns
- air guns

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- Iand seismics
 - explosives
 - vibrators
 - (accelerated) drop weights
- marine seismics
 - water guns

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- Iand seismics
 - explosives
 - vibrators
 - (accelerated) drop weights
- marine seismics
 - water guns
 - air guns

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Iand seismics

- geophone
- measured quantity: one or more components of particle velocity (or acceleration) vector
- marine seismics

 final result: multicoverage data in time domain, discrete time series for discrete source and receiver locations 64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- Iand seismics
 - geophone

- measured quantity: one or more components of particle velocity (or acceleration) vector
- marine seismics
 - hydrophones (in streamer) measured quantity: pressure changes
- Construction of the second state of the factor of the second state of the second state

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

▲□▶ ▲母▼ 釣�?

- Iand seismics
 - geophone
 - measured quantity: one or more components of particle velocity (or acceleration) vector
- marine seismics
 - hydrophones (in streamer)
 - measured quantity: pressure changes
- final result: multicoverage data in time domain, discrete time series for discrete source and receiver locations

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- Iand seismics
 - geophone
 - measured quantity: one or more components of particle velocity (or acceleration) vector

marine seismics

- hydrophones (in streamer)
- measured quantity: pressure changes
- final result: multicoverage data in time domain, discrete time series for discrete source and receiver locations

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- Iand seismics
 - geophone
 - measured quantity: one or more components of particle velocity (or acceleration) vector
- marine seismics
 - hydrophones (in streamer)

- measured quantity: pressure changes
- final result: multicoverage data in time domain,

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- Iand seismics
 - geophone
 - measured quantity: one or more components of particle velocity (or acceleration) vector
- marine seismics
 - hydrophones (in streamer)
 - measured quantity: pressure changes
- final result: multicoverage data in time domain, discrete time series for discrete source and receiver locations

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- Iand seismics
 - geophone
 - measured quantity: one or more components of particle velocity (or acceleration) vector
- marine seismics
 - hydrophones (in streamer)
 - measured quantity: pressure changes
- final result: multicoverage data in time domain, discrete time series for discrete source and receiver locations

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

A field data record

A: direct wave B: refracted waves C: ground roll D: reflected waves

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

▲□▶ ▲□▶ 少へで

assumptions in the following:

- isotropic, laterally inhomogeneous model
- no a priori information about velocity model
- ray theory is applicable
- only primary reflection events
- restrictions for the sake of simplicity:

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Fime domain imaging Assumptions

Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

assumptions in the following:

- isotropic, laterally inhomogeneous model
- no a priori information about velocity model
- ray theory is applicable
- only primary reflection events

restrictions for the sake of simplicity:

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Fime domain imaging Assumptions

Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- assumptions in the following:
 - isotropic, laterally inhomogeneous model
 - no a priori information about velocity model
 - ray theory is applicable
 - only primary reflection events
- restrictions for the sake of simplicity:

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Fime domain imaging Assumptions

Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- assumptions in the following:
 - isotropic, laterally inhomogeneous model
 - no a priori information about velocity model
 - ray theory is applicable
 - only primary reflection events
- restrictions for the sake of simplicity:
 - the subsurface is 2.5D
 - 2D acquisition along a straight profile line

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Fime domain imaging Assumptions

Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- assumptions in the following:
 - isotropic, laterally inhomogeneous model
 - no a priori information about velocity model
 - ray theory is applicable
 - only primary reflection events
- restrictions for the sake of simplicity:
 - the subsurface is 2.5D
 - 2D acquisition along a straight profile line.

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions

Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- assumptions in the following:
 - isotropic, laterally inhomogeneous model
 - no a priori information about velocity model
 - ray theory is applicable
 - only primary reflection events

restrictions for the sake of simplicity:

- the subsurface is 2.5D
- 2D acquisition along a straight profile line

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions

Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- assumptions in the following:
 - isotropic, laterally inhomogeneous model
 - no a priori information about velocity model
 - ray theory is applicable
 - only primary reflection events
- restrictions for the sake of simplicity:
 - the subsurface is 2.5D
 - 2D acquisition along a straight profile line

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions

Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- assumptions in the following:
 - isotropic, laterally inhomogeneous model
 - no a priori information about velocity model
 - ray theory is applicable
 - only primary reflection events
- restrictions for the sake of simplicity:
 - the subsurface is 2.5D
 - 2D acquisition along a straight profile line

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

ime domain imaging Assumptions

Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-shot configuration (as acquired)
- observations:
 - various points on reflector illuminated
 - rays pass through different parts of overburden sector common leatures

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

▲□▶ ▲□▶ 少々?

- common-shot configuration (as acquired)
- observations:
 - various points on reflector illuminated
 - rays pass through different parts of overburden
 no common features
 - extremely difficult to extract useful information

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

・ロ・ ・ 日・ うへで

- common-shot configuration (as acquired)
- observations:
 - various points on reflector illuminated
 - rays pass through different parts of overburden
 no common features
 - extremely difficult to extract useful information

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-shot configuration (as acquired)
- observations:
 - various points on reflector illuminated
 - rays pass through different parts of overburden

🛏 no common features

extremely difficult to extract useful information

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

▲□▶ ▲□▶ 少々で

- common-shot configuration (as acquired)
- observations:
 - various points on reflector illuminated
 - rays pass through different parts of overburden
 - no common features

extremely difficult to extract useful information

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-shot configuration (as acquired)
- observations:
 - various points on reflector illuminated
 - rays pass through different parts of overburden
 - no common features
 - extremely difficult to extract useful information

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

common-midpoint configuration

- observations:
 - reflection points more or less focused
 requires dip moveout correction
 - rays pass through different parts of overburden
 - second-order approximation of traveltime available
 - allows stacking velocity analysis (1 parameter)

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-midpoint configuration
- observations:
 - reflection points more or less focused
 requires dip moveout correction
 - rays pass through different parts of overburden
 - second-order approximation of traveltime available
 - allows stacking velocity analysis (1 parameter)

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-midpoint configuration
- observations:
 - reflection points more or less focused
 - requires dip moveout correction
 - rays pass through different parts of overburden
 - second-order approximation of traveltime available
 - allows stacking velocity analysis (1 parameter)

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-midpoint configuration
- observations:
 - reflection points more or less focused
 - ➡ requires dip moveout correction
 - rays pass through different parts of overburden
 - second-order approximation of traveltime available
 - allows stacking velocity analysis (1 parameter

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-midpoint configuration
- observations:
 - reflection points more or less focused
 - requires dip moveout correction
 - rays pass through different parts of overburden
 - second-order approximation of traveltime available
 - allows stacking velocity analysis (1 parameter)

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-midpoint configuration
- observations:
 - reflection points more or less focused
 - requires dip moveout correction
 - rays pass through different parts of overburden
 - second-order approximation of traveltime available
 - allows stacking velocity analysis (1 parameter)

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-midpoint configuration
- observations:
 - reflection points more or less focused
 - requires dip moveout correction
 - rays pass through different parts of overburden
 - second-order approximation of traveltime available
 - allows stacking velocity analysis (1 parameter)

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-reflection-point (CRP) configuration
- observations:
 - focuses in exactly one reflection point
 - rays pass through different parts of overburden
 - » second-order approximation of traveltime available
 - allows (in principle) generalized stacking velocity analysis (2 parameters)

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-reflection-point (CRP) configuration
- observations:
 - focuses in exactly one reflection point
 - rays pass through different parts of overburden
 - second-order approximation of traveltime available
 - allows (in principle) generalized stacking velocity analysis (2 parameters)

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-reflection-point (CRP) configuration
- observations:
 - focuses in exactly one reflection point
 - rays pass through different parts of overburden
 - second-order approximation of traveltime available
 - allows (in principle) generalized stacking velocity analysis (2 parameters)

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-reflection-point (CRP) configuration
- observations:
 - focuses in exactly one reflection point
 - rays pass through different parts of overburden
 - second-order approximation of traveltime available
 - allows (in principle) generalized stacking velocity analysis (2 parameters)

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-reflection-point (CRP) configuration
- observations:
 - focuses in exactly one reflection point
 - rays pass through different parts of overburden
 - second-order approximation of traveltime available
 - allows (in principle) generalized stacking velocity analysis (2 parameters)

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- common-reflection-point (CRP) configuration
- observations:
 - focuses in exactly one reflection point
 - rays pass through different parts of overburden
 - second-order approximation of traveltime available
 - allows (in principle) generalized stacking velocity analysis (2 parameters)

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

 traveltime approximation allows to simulate zero-offset (ZO) sections

 (generalized) stacking velocity analysis provides information about overburden

basis for velocity model determination

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

 traveltime approximation allows to simulate zero-offset (ZO) sections

- (generalized) stacking velocity analysis provides information about overburden
 - ➡ basis for velocity model determination

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

 traveltime approximation allows to simulate zero-offset (ZO) sections

- (generalized) stacking velocity analysis provides information about overburden
 - ➡ basis for velocity model determination

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

 traveltime approximation allows to simulate zero-offset (ZO) sections

 (generalized) stacking velocity analysis provides information about overburden

basis for velocity model determination

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

 traveltime approximation allows to simulate zero-offset (ZO) sections

- (generalized) stacking velocity analysis provides information about overburden
 - ➡ basis for velocity model determination

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

(generalized) stacking velocity analysis

- search for stacking operator fitting best actual reflection event
- based on coherence analysis
- data-driven stacking with CRP trajectories

solution:

Common-Reflection-Surface stack

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

(generalized) stacking velocity analysis

- search for stacking operator fitting best actual reflection event
- based on coherence analysis

data-driven stacking with CRP trajectories

- diting a space curve to a traveitime surrace
 In phy embiguous, herdly applicable
- solution:

Common-Reflection-Surface stack

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- (generalized) stacking velocity analysis
 - search for stacking operator fitting best actual reflection event
 - based on coherence analysis
- data-driven stacking with CRP trajectories
 fitting a space curve to a traveltime surface
 highly amblouous, hardly applicable
- solution:

Common-Reflection-Surface stack

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- (generalized) stacking velocity analysis
 - search for stacking operator fitting best actual reflection event
 - based on coherence analysis

data-driven stacking with CRP trajectories

fitting a space *curve* to a traveltime *surface* highly ambiguous, hardly applicable

solution:

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- (generalized) stacking velocity analysis
 - search for stacking operator fitting best actual reflection event
 - based on coherence analysis
- data-driven stacking with CRP trajectories
 - fitting a space curve to a traveltime surface
 highly ambiguous, hardly applicable
- solution:

consider entire reflector segments
 i.e., consider neighboring GRPs
 i.e., consider local curvature of reflector

three stacking parameters.

Common-Reflection-Surface stack

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

・ロト < 団 > シッペー

- (generalized) stacking velocity analysis
 - search for stacking operator fitting best actual reflection event
 - based on coherence analysis
- data-driven stacking with CRP trajectories
 - fitting a space curve to a traveltime surface
 highly ambiguous, hardly applicable
- solution:
 - consider entire reflector segments
 - i.e., consider neighboring CRPs
 - i.e., consider local curvature of reflector
 fitting spatial operator to traveitime surface and the surface surface in the surface su
- Common-Reflection-Surface stack

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- (generalized) stacking velocity analysis
 - search for stacking operator fitting best actual reflection event
 - based on coherence analysis
- data-driven stacking with CRP trajectories
 - fitting a space curve to a traveltime surface
 highly ambiguous, hardly applicable
- solution:
 - consider entire reflector segments
 - i. e., consider neighboring CRPs
 - i. e., consider local curvature of reflector
 fitting spatial operator to traveltime surface
 three stacking parameters

Common-Reflection-Surface stack

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- (generalized) stacking velocity analysis
 - search for stacking operator fitting best actual reflection event
 - based on coherence analysis
- data-driven stacking with CRP trajectories
 - fitting a space curve to a traveltime surface
 highly ambiguous, hardly applicable
- solution:
 - consider entire reflector segments
 - i. e., consider neighboring CRPs
 - i. e., consider local curvature of reflector
 fitting spatial operator to traveltime surface
 three stacking parameters

Common-Reflection-Surface stack

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- (generalized) stacking velocity analysis
 - search for stacking operator fitting best actual reflection event
 - based on coherence analysis
- data-driven stacking with CRP trajectories
 - fitting a space curve to a traveltime surface
 highly ambiguous, hardly applicable
- solution:
 - consider entire reflector segments
 - i.e., consider neighboring CRPs
 - i. e., consider local curvature of reflector
 fitting spatial operator to traveltime surface
 three stacking parameters

Common-Reflection-Surface stack

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- (generalized) stacking velocity analysis
 - search for stacking operator fitting best actual reflection event
 - based on coherence analysis
- data-driven stacking with CRP trajectories
 - fitting a space curve to a traveltime surface
 highly ambiguous, hardly applicable
- solution:
 - consider entire reflector segments
 - i.e., consider neighboring CRPs
 - i. e., consider local curvature of reflector
 - fitting spatial operator to traveltime surface
 three stacking parameters

Common-Reflection-Surface stack

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- (generalized) stacking velocity analysis
 - search for stacking operator fitting best actual reflection event
 - based on coherence analysis
- data-driven stacking with CRP trajectories
 - fitting a space curve to a traveltime surface
 highly ambiguous, hardly applicable
- solution:
 - consider entire reflector segments
 - i.e., consider neighboring CRPs
 - i. e., consider local curvature of reflector
 fitting spatial operator to traveltime surface
 three stacking parameters

Common-Reflection-Surface stack

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- (generalized) stacking velocity analysis
 - search for stacking operator fitting best actual reflection event
 - based on coherence analysis
- data-driven stacking with CRP trajectories
 - fitting a space curve to a traveltime surface
 highly ambiguous, hardly applicable
- solution:
 - consider entire reflector segments
 - i.e., consider neighboring CRPs
 - i. e., consider local curvature of reflector
 fitting *spatial* operator to traveltime *surface* three stacking parameters

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Common-Reflection-Surface stack

- (generalized) stacking velocity analysis
 - search for stacking operator fitting best actual reflection event
 - based on coherence analysis
- data-driven stacking with CRP trajectories
 - fitting a space curve to a traveltime surface
 highly ambiguous, hardly applicable
- solution:
 - consider entire reflector segments
 - i.e., consider neighboring CRPs
 - i. e., consider local curvature of reflector
 fitting *spatial* operator to traveltime *surface* three stacking parameters
- Common-Reflection-Surface stack

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Interpretation of stacking parameters

Data acquisition Seismic sources Seismic receivers

> Time domain imaging Assumptions Data sorting Stacking CRS stack

64th Annual Meeting

DGG, Berlin 2004 J. Mann

The task of seismics

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

▲□▶ < □ ▶ < ○ < ○</p>

Interpretation of stacking parameters

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

▲□▶ ▲母 ▶ එ�?

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Fime domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

・ロト ・白 ト うへで

CRS stacked section

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Fime domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

< □ > < □ > < □ > < ○</p>

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

- Time domain imaging Assumptions Data sorting Stacking CRS stack
- Model determination Strategy Data example
- 10 From time to depth Strategy
 - Data example
 - Conclusions
 - Acknowledgments
 - Announcement

< □ > < □ > < □ > < ○ < □ >

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

- Time domain imaging Assumptions Data sorting Stacking CRS stack
- Model determination Strategy Data example
- From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

< □ > < □ > < □ > < ○ < ○</p>

Real data example

Conventional 3D prestack depth migration Data and image courtesy of ENI E&P division

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Real data example

3D poststack depth migration of CRS stack Data and image courtesy of ENI E&P division

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

< □ > < □ > < □ > < ○ < ○</p>

Real data example

Depth slices of coherence cubes, conventional vs. CRS Data and image courtesy of ENI E&P division

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Further real data examples:

- Seismic imaging practice with CRS stack Trappe et al., session S5B
- Anwendung des Common-Reflection-Surface Stack auf reflexionsseismische Daten Chávez Zander et al., session S5C
- A seismic reflection imaging workflow based on the CRS stack: a data example from the Oberrheingraben Hertweck et al., session S5D
- Salt tectonics in the Southern Levantine Basis (GEMME I) Netzeband et al., session SMP11
- CRS imaging of salt tectonic structures in the Southeastern Mediterranean Sea (GEMME I) Gradmann et al., session SMP12

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

 simulated zero-offset section with high signal/noise ratio

- 3 stacking parameters or kinematic wavefield attributes related to
 - first and second traveltime derivatives
 - alternative interpretation: propagation direction an curvatures of wavefronts due to hypothetical experiments
- remaining tasks:

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- simulated zero-offset section with high signal/noise ratio
- 3 stacking parameters or kinematic wavefield attributes related to
 - first and second traveltime derivatives
 - alternative interpretation: propagation direction and curvatures of wavefronts due to hypothetical experiments

remaining tasks:

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- simulated zero-offset section with high signal/noise ratio
- 3 stacking parameters or kinematic wavefield attributes related to
 - first and second traveltime derivatives
 - alternative interpretation: propagation direction and curvatures of wavefronts due to hypothetical experiments
- remaining tasks:
 - determination of macrovelocity model line-depth transformation for structural depth image

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- simulated zero-offset section with high signal/noise ratio
- 3 stacking parameters or kinematic wavefield attributes related to
 - first and second traveltime derivatives
 - alternative interpretation: propagation direction and curvatures of wavefronts due to hypothetical experiments

remaining tasks:

- determination of macrovelocity model
- time-depth transformation for structural depth image

The task of seismics

Data acquisition Seismic sources Seismic receivers

Fime domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- simulated zero-offset section with high signal/noise ratio
- 3 stacking parameters or kinematic wavefield attributes related to
 - first and second traveltime derivatives
 - alternative interpretation: propagation direction and curvatures of wavefronts due to hypothetical experiments

remaining tasks:

- determination of macrovelocity model
- time-depth transformation for structural depth image

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Fime domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- simulated zero-offset section with high signal/noise ratio
- 3 stacking parameters or kinematic wavefield attributes related to
 - first and second traveltime derivatives
 - alternative interpretation: propagation direction and curvatures of wavefronts due to hypothetical experiments
- remaining tasks:
 - determination of macrovelocity model
 - time-depth transformation for structural depth image

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Fime domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- simulated zero-offset section with high signal/noise ratio
- 3 stacking parameters or kinematic wavefield attributes related to
 - first and second traveltime derivatives
 - alternative interpretation: propagation direction and curvatures of wavefronts due to hypothetical experiments
- remaining tasks:
 - determination of macrovelocity model
 - time-depth transformation for structural depth image

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- pick local reflection events in simulated zero-offset section
- extract associated wavefield attributes
- define (simple) initial model of velocity distribution and reflector segments
- forward-modeling of traveltimes and wavefield attributes by dynamic ray tracing
- iterative minimization of misfit between forward-modeled and picked traveltimes and attributes
 - tomographic inversion approach, yields smooth velocity model consistent with picked data
 - data-driven basis for time-depth transformation

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- pick local reflection events in simulated zero-offset section
- extract associated wavefield attributes
- define (simple) initial model of velocity distribution and reflector segments
- forward-modeling of traveltimes and wavefield attributes by dynamic ray tracing
- iterative minimization of misfit between forward-modeled and picked traveltimes and attributes
 - tomographic inversion approach, yields smooth velocity model consistent with picked data
 - data-driven basis for time-depth transformation

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- pick local reflection events in simulated zero-offset section
- extract associated wavefield attributes
- define (simple) initial model of velocity distribution and reflector segments
- forward-modeling of traveltimes and wavefield attributes by dynamic ray tracing
- iterative minimization of misfit between forward-modeled and picked traveltimes and attributes
 - ➡ tomographic inversion approach, yields smooth velocity model consistent with picked data
 - data-driven basis for time-depth transformation

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- pick local reflection events in simulated zero-offset section
- extract associated wavefield attributes
- define (simple) initial model of velocity distribution and reflector segments
- forward-modeling of traveltimes and wavefield attributes by dynamic ray tracing
- iterative minimization of misfit between forward-modeled and picked traveltimes and attributes
 - ➡ tomographic inversion approach, yields smooth velocity model consistent with picked data
 - data-driven basis for time-depth transformation

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- pick local reflection events in simulated zero-offset section
- extract associated wavefield attributes
- define (simple) initial model of velocity distribution and reflector segments
- forward-modeling of traveltimes and wavefield attributes by dynamic ray tracing
- iterative minimization of misfit between forward-modeled and picked traveltimes and attributes
 - ➡ tomographic inversion approach, yields smooth velocity model consistent with picked data
 - data-driven basis for time-depth transformation

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- pick local reflection events in simulated zero-offset section
- extract associated wavefield attributes
- define (simple) initial model of velocity distribution and reflector segments
- forward-modeling of traveltimes and wavefield attributes by dynamic ray tracing
- iterative minimization of misfit between forward-modeled and picked traveltimes and attributes
 - ➡ tomographic inversion approach, yields smooth velocity model consistent with picked data
 - data-driven basis for time-depth transformation

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- pick local reflection events in simulated zero-offset section
- extract associated wavefield attributes
- define (simple) initial model of velocity distribution and reflector segments
- forward-modeling of traveltimes and wavefield attributes by dynamic ray tracing
- iterative minimization of misfit between forward-modeled and picked traveltimes and attributes
 - → tomographic inversion approach, yields smooth velocity model consistent with picked data
 - ➡ data-driven basis for time-depth transformation

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

< □ > < □ > < □ > < □ >

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

▲□▶ ▲母▼ 少々で

Extracted wavefield attributes (second order)

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

4 日 × 4 日 × 9 へ ()

Reconstructed velocity model and normal rays

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Reconstructed velocity model and reflector segments

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

◆□ ▶ ▲□ ▶ 少々⊙

Original velocity model overlain with reconstructed reflector segments

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

macrovelocity model allows time-depth transformation:

- poststack depth migration of CRS stack result and/or
- prestack depth migration of entire multicoverage data
- results in structural image in depth domain
- prestack depth-migrated images suited to evaluate the macrovelocity model

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- macrovelocity model allows time-depth transformation:
 - poststack depth migration of CRS stack result and/or
 - prestack depth migration of entire multicoverage data
- results in structural image in depth domain
- prestack depth-migrated images suited to evaluate the macrovelocity model

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- macrovelocity model allows time-depth transformation:
 - poststack depth migration of CRS stack result and/or
 - prestack depth migration of entire multicoverage data
- results in structural image in depth domain
- prestack depth-migrated images suited to evaluate the macrovelocity model

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- macrovelocity model allows time-depth transformation:
 - poststack depth migration of CRS stack result and/or
 - prestack depth migration of entire multicoverage data
- results in structural image in depth domain
- prestack depth-migrated images suited to evaluate the macrovelocity model

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- macrovelocity model allows time-depth transformation:
 - poststack depth migration of CRS stack result and/or
 - prestack depth migration of entire multicoverage data
- results in structural image in depth domain
- prestack depth-migrated images suited to evaluate the macrovelocity model

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Synthetic data example

Poststack migration of CRS stack section

64th Annual Meeting DGG, Berlin 2004

J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Synthetic data example

64th Annual Meeting DGG, Berlin 2004

J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

4 日 × 4 日 × 9 へ ()

Synthetic data example

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Fime domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

< □ > < □ > < □ > < ○ < ○ < ○ < □ >

consistent, entirely data-driven imaging approach

- largely automated approach
- also applicable for 3D data
- various extensions available:

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

< □ > < □ > < □ > < ○<</p>

- consistent, entirely data-driven imaging approach
- largely automated approach
- also applicable for 3D data
- various extensions available:
 - acquisition striace with rugged topography simulation of arbitrary acquisition geometries generalized Dix-type, inversion, layer by layer residual static corrections estimation of projected Fresnel zone and geometrical spreading factor

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- consistent, entirely data-driven imaging approach
- largely automated approach
- also applicable for 3D data
- various extensions available:
 - acquisition surface with rugged topography
 - simulation of arbitrary acquisition geometries.
 - generalized Dix-type inversion layer by layer
 - residual static corrections
 - estimation of projected Presnel zone and geometrical spreading factor

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- consistent, entirely data-driven imaging approach
- largely automated approach
- also applicable for 3D data
- various extensions available:
 - acquisition surface with rugged topography
 - simulation of arbitrary acquisition geometries
 - generalized Dix-type inversion layer by layer
 - residual static corrections
 - estimation of projected Fresnel zone and geometrical spreading factor
 - ▶ ...

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- consistent, entirely data-driven imaging approach
- largely automated approach
- also applicable for 3D data
- various extensions available:
 - acquisition surface with rugged topography
 - simulation of arbitrary acquisition geometries
 - generalized Dix-type inversion layer by layer
 - residual static corrections
 - estimation of projected Fresnel zone and geometrical spreading factor
 - ▶ ...

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- consistent, entirely data-driven imaging approach
- largely automated approach
- also applicable for 3D data
- various extensions available:
 - acquisition surface with rugged topography
 - simulation of arbitrary acquisition geometries
 - generalized Dix-type inversion layer by layer
 - residual static corrections
 - estimation of projected Fresnel zone and geometrical spreading factor

...

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- consistent, entirely data-driven imaging approach
- largely automated approach
- also applicable for 3D data
- various extensions available:
 - acquisition surface with rugged topography
 - simulation of arbitrary acquisition geometries
 - generalized Dix-type inversion layer by layer
 - residual static corrections
 - estimation of projected Fresnel zone and geometrical spreading factor

...

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- consistent, entirely data-driven imaging approach
- largely automated approach
- also applicable for 3D data
- various extensions available:
 - acquisition surface with rugged topography
 - simulation of arbitrary acquisition geometries
 - generalized Dix-type inversion layer by layer
 - residual static corrections
 - estimation of projected Fresnel zone and geometrical spreading factor

▶ ...

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- consistent, entirely data-driven imaging approach
- largely automated approach
- also applicable for 3D data
- various extensions available:
 - acquisition surface with rugged topography
 - simulation of arbitrary acquisition geometries
 - generalized Dix-type inversion layer by layer
 - residual static corrections
 - estimation of projected Fresnel zone and geometrical spreading factor

...

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

- consistent, entirely data-driven imaging approach
- largely automated approach
- also applicable for 3D data
- various extensions available:
 - acquisition surface with rugged topography
 - simulation of arbitrary acquisition geometries
 - generalized Dix-type inversion layer by layer
 - residual static corrections
 - estimation of projected Fresnel zone and geometrical spreading factor
 - ▶ ...

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Acknowledgments

I would like to thank

- my colleagues in Karlsruhe, especially
 - Steffen Bergler (CRS stack, forward-modeling)
 - Eric Duveneck (tomographic inversion)
 - Thomas Hertweck (migration)
- ENI E&P Division, Milano, Italy, for their data examples
- the sponsors of the Wave Inversion Technology (WIT) Consortium, Karlsruhe, Germany, for their support
- Till Tantau for his Laret beamer class

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

More about imaging:

64th Annual Meeting DGG, Berlin 2004 J. Mann

The task of seismics

Data acquisition Seismic sources Seismic receivers

Time domain imaging Assumptions Data sorting Stacking CRS stack

Model determination Strategy Data example

From time to depth Strategy Data example

Conclusions

Acknowledgments

Announcement

▲□▶ ▲□▶ ろくで