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Conventional approach

Stacking velocity analysis and CMP stack

I performed in CMP gathers only
I based on analytic traveltime approximation

, e. g.

t2(x) = t2
0 +

x2

v2
NMO

,

x : offset, t0 zero-offset traveltime

I stacking velocity vNMO usually picked manually
assisted by coherence analysis

Further implicit assumptions?
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Basic idea
Observations:

I conventional stack implicitly relies on reflector
continuity

(this also applies to NMO + DMO correction)

I based on normal rays for offset zero
I we have band-limited data

å Fresnel zone concept

Consequences:
If conventional stack works

I there are neighboring reflection points
I they physically contribute to the wavefield at

a considered CMP

Why shouldn’t we incorporate these
neighboring reflection points?
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CRS stack

Features inherited from conventional stack:
I normal ray concept
I assumption of reflector continuity
I analytical traveltime approximation (2nd order)
I coherence analysis yields stacking parameters
I stack yields simulated zero-offset section

Additional features:
I incorporates neighboring CMP gathers
I yields additional stacking parameters
I increases the coverage
I improves reflector continuity and S/N ratio
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CRS stacking parameters

CRS stacking operator usually parameterized
in terms of wavefield attributes

+ vivid geometrical interpretation

+ useful for inversion, smoothing, . . .

– unfamiliar parameters

Aims in the following:
I operator expressed in more familiar terms
I demonstrate relation between these parameters
I clear distinction between model and data space
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CRS stacking operator

Hyperbolic representation:

t2 (∆m,x) = [t0 +2p ∆m]2 +
x2

v2
NMO

+
∆m2

v2
CMO

= t2
0 +

x2

v2
NMO︸ ︷︷ ︸

conventional stack

+ 4 t0 p ∆m +4∆m2p2

︸ ︷︷ ︸
dip dependent

+
∆m2

vCMO︸ ︷︷ ︸
curvature dependent

∆m midpoint displacement m−m0
p horizontal slowness

vCMO curvature-moveout velocity
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I offset is now a 2D vector
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azimuth-dependent

I general idea remains just the same
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