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Introduction

Conventional stacking velocity analysis:

I (semi-)interactive, interpretative velocity picking

I coarse picks on selected key events, only

☞ human interaction required

☞ low temporal and spatial resolution

☞ pulse stretch deteriorates stack result

Thus desirable:

I automated approach

I more appropriate parameterization

I maximum resolution
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Common-Reflection-Surface (CRS)
stack

Generalization of conventional approach:

I second-order approximation of traveltime

I fully automated coherence-based application

I high-density analysis
I spatial stacking operator

☞ much more prestack traces used
☞ enhanced signal/noise ratio

I additional stacking parameters related to 1. and 2.
traveltime derivatives
☞ geometrical interpretation
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Common-Reflection-Surface stack

Geometrical interpretation of stacking parameters:
x0 x0

RNIP NR
α α

NIP NIP

Emergence direction and curvatures of hypothetical
wavefronts:

I exploding point source ☞ normal-incidence-point
(NIP) wave

I exploding reflector ☞ normal (N) wave
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High-density analysis vs. smoothing

Stacking parameters are subject to

I fluctuations due to noise

I outliers due to failures to detect the relevant
coherence maximum

Stacking parameters represent integral properties of the
subsurface

➥ smooth variation along reflection events

➥ event-consistent smoothing along reflection events
is justified!



74th Annual Meeting
SEG, Denver 2004

Mann & Duveneck

Introduction
Conventional
CRS stack
Why smoothing?
Pulse stretch

Smoothing algorithm
Requirements
The algorithm
Schematic example

Data examples
Parameters
Stack sections

Conclusions

Acknowledgments

Related talks

W I T

High-density analysis vs. smoothing

Stacking parameters are subject to

I fluctuations due to noise

I outliers due to failures to detect the relevant
coherence maximum

Stacking parameters represent integral properties of the
subsurface

➥ smooth variation along reflection events

➥ event-consistent smoothing along reflection events
is justified!



74th Annual Meeting
SEG, Denver 2004

Mann & Duveneck

Introduction
Conventional
CRS stack
Why smoothing?
Pulse stretch

Smoothing algorithm
Requirements
The algorithm
Schematic example

Data examples
Parameters
Stack sections

Conclusions

Acknowledgments

Related talks

W I T

High-density analysis vs. smoothing

Stacking parameters are subject to

I fluctuations due to noise

I outliers due to failures to detect the relevant
coherence maximum

Stacking parameters represent integral properties of the
subsurface

➥ smooth variation along reflection events

➥ event-consistent smoothing along reflection events
is justified!



74th Annual Meeting
SEG, Denver 2004

Mann & Duveneck

Introduction
Conventional
CRS stack
Why smoothing?
Pulse stretch

Smoothing algorithm
Requirements
The algorithm
Schematic example

Data examples
Parameters
Stack sections

Conclusions

Acknowledgments

Related talks

W I T

High-density analysis vs. smoothing

Stacking parameters are subject to

I fluctuations due to noise

I outliers due to failures to detect the relevant
coherence maximum

Stacking parameters represent integral properties of the
subsurface

➥ smooth variation along reflection events

➥ event-consistent smoothing along reflection events
is justified!



74th Annual Meeting
SEG, Denver 2004

Mann & Duveneck

Introduction
Conventional
CRS stack
Why smoothing?
Pulse stretch

Smoothing algorithm
Requirements
The algorithm
Schematic example

Data examples
Parameters
Stack sections

Conclusions

Acknowledgments

Related talks

W I T

High-density analysis vs. smoothing

Stacking parameters are subject to

I fluctuations due to noise

I outliers due to failures to detect the relevant
coherence maximum

Stacking parameters represent integral properties of the
subsurface

➥ smooth variation along reflection events

➥ event-consistent smoothing along reflection events
is justified!



74th Annual Meeting
SEG, Denver 2004

Mann & Duveneck

Introduction
Conventional
CRS stack
Why smoothing?
Pulse stretch

Smoothing algorithm
Requirements
The algorithm
Schematic example

Data examples
Parameters
Stack sections

Conclusions

Acknowledgments

Related talks

W I T

High-density analysis vs. smoothing

Stacking parameters are subject to

I fluctuations due to noise

I outliers due to failures to detect the relevant
coherence maximum

Stacking parameters represent integral properties of the
subsurface

➥ smooth variation along reflection events

➥ event-consistent smoothing along reflection events
is justified!



74th Annual Meeting
SEG, Denver 2004

Mann & Duveneck

Introduction
Conventional
CRS stack
Why smoothing?
Pulse stretch

Smoothing algorithm
Requirements
The algorithm
Schematic example

Data examples
Parameters
Stack sections

Conclusions

Acknowledgments

Related talks

W I T

High-density analysis vs. smoothing

Bandwidth is limited. What happens along the wavelet?

I high-density stacking velocity
I systematic variation along wavelet
I smoothing reintroduces pulse stretch phenomenon

I CRS stacking parameters
I virtually constant along wavelet
I smoothing also allowed along wavelet without pulse

stretch
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Pulse stretch phenomenon
Smooth model: stacking velocity vs. CRS parameters
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From: Mann and Höcht, 2003, Pulse stretch effects in the context of
data-driven imaging methods, 65th Conf., Eur. Assn. Geosci. Eng.
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Smoothing algorithm

Requirements:

I smoothing along reflection events justified ✔

I smoothing along wavelet justified ✔

I remaining task: ensure event consistence

CRS stack provides:

I local shape of zero-offset reflection event (α, RN)

I approximation of projected Fresnel zone

I coherence values as measure of reliability

☞ this allows a simple and efficient smoothing algorithm
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I approximation of projected Fresnel zone

I coherence values as measure of reliability

☞ this allows a simple and efficient smoothing algorithm
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Smoothing algorithm

For each zero-offset sample and each CRS parameter

I align smoothing window along reflection event using
emergence angle α (optionally also RN)

I reject samples below given coherence threshold ☞

use only reliable attributes

I reject samples with dip difference beyond threshold
☞ avoid mixing of intersecting events

I apply combined filter:
I median filter ☞ remove outliers
I averaging ☞ remove fluctuations

I assign result to zero-offset sample
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Smoothing algorithm

Size of smoothing window:

I as small as possible, as large as required

I temporal extension ≤ wavelet length

I lateral extension � projected Fresnel zone, either
fixed or a fraction of approximate Fresnel zone given
by CRS parameters

Smoothing in the 3D case:

I smoothing window is a small volume

I same selection criteria as in 2D

I combined filter has to be generalized for curvature
matrices and slowness vectors
☞ current research
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Real data example
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Real data examples

CRS stack sections (detail I)

Stack with original vs. stack with smoothed parameters
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Real data examples

CRS stack sections (detail II)

Stack with original vs. stack with smoothed parameters
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Conclusions

Smoothing algorithm:

I event-consistent smoothing

I based on CRS stacking parameters and coherence

I removes outliers

I removes fluctuations

I preserves kinematic properties of reflection events

I avoids mixing of intersecting events

➥ improved quality of stacked section

➥ more physical CRS stacking parameter sections for
various applications like macromodel determination
etc.
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