

Generalizations of the Common-Reflection-Surface Stack

Jürgen Mann^{*}, Steffen Bergler, Yonghai Zhang, Pedro Chira, and Peter Hubral

> Geophysical Institute University of Karlsruhe, Germany Juergen.Mann@gpi.uni-karlsruhe.de

basic concepts of the CRS stack

- basic concepts of the CRS stack
- the simplest case: 2-D zero-offset simulation

- basic concepts of the CRS stack
- the simplest case: 2-D zero-offset simulation
- extension to 3-D zero-offset simulation

- basic concepts of the CRS stack
- the simplest case: 2-D zero-offset simulation
- extension to 3-D zero-offset simulation
- extension to 2-D finite-offset simulation

- basic concepts of the CRS stack
- the simplest case: 2-D zero-offset simulation
- extension to 3-D zero-offset simulation
- extension to 2-D finite-offset simulation
- consideration of topography

- basic concepts of the CRS stack
- the simplest case: 2-D zero-offset simulation
- extension to 3-D zero-offset simulation
- extension to 2-D finite-offset simulation
- consideration of topography
 - smooth topography

- basic concepts of the CRS stack
- the simplest case: 2-D zero-offset simulation
- extension to 3-D zero-offset simulation
- extension to 2-D finite-offset simulation
- consideration of topography
 - smooth topography
 - rugged topography

- basic concepts of the CRS stack
- the simplest case: 2-D zero-offset simulation
- extension to 3-D zero-offset simulation
- extension to 2-D finite-offset simulation
- consideration of topography
 - smooth topography
 - rugged topography
- Conclusions

- basic concepts of the CRS stack
- the simplest case: 2-D zero-offset simulation
- extension to 3-D zero-offset simulation
- extension to 2-D finite-offset simulation
- consideration of topography
 - smooth topography
 - rugged topography
- Conclusions
- Outlook

B003	Stacking velocity analysis with CRS Stack attributes
B015	3D zero-offset Common Reflection Surface Stack for land data – real data example
B016	Improved resolution in time and depth processing by macromodel independent CRS Stacking
P165	Topographic correction using CRS parameters
P165 P166	Topographic correction using CRS parameters 2D and 3D ZO CRS stack for a complex top-surface topography

Basic ideas:

entirely data-oriented approach

Basic ideas:

- entirely data-oriented approach
- no explicit parameterization of depth model

Basic ideas:

- entirely data-oriented approach
- no explicit parameterization of depth model

Inherent assumptions:

 coherent reflection events exist in the pre-stack data

Basic ideas:

- entirely data-oriented approach
- no explicit parameterization of depth model

Inherent assumptions:

- coherent reflection events exist in the pre-stack data
- paraxial approximation holds in vicinity of central ray

Establish relationship between

- subsurface reflector segment and
- its kinematic reflection response in the pre-stack time domain

by means of hypothetical experiments.

Establish relationship between

- subsurface reflector segment and
- its kinematic reflection response in the pre-stack time domain
- by means of hypothetical experiments.
- Parameters or CRS wavefield attributes:
 - curvatures of hypothetical wavefronts
 - their propagation directions

Spatial CRS stacking operator:

parameterized by CRS wavefield attributes

- parameterized by CRS wavefield attributes
- actual properties of reflector segment not required

- parameterized by CRS wavefield attributes
- actual properties of reflector segment not required
- second-order approximation of reflection traveltime

- parameterized by CRS wavefield attributes
- actual properties of reflector segment not required
- second-order approximation of reflection traveltime
- determination by means of coherence analysis in pre-stack data

- parameterized by CRS wavefield attributes
- actual properties of reflector segment not required
- second-order approximation of reflection traveltime
- determination by means of coherence analysis in pre-stack data
- generalization of well-known velocity analysis

Simplest case: 2-D ZO (I)

Simplest case: 2-D ZO (II)

Traveltime approximation for 2-D:

$$t_{hyp}^{2} = \left(t_{0} - \frac{2\sin\alpha}{v_{0}}m\right)^{2} + \frac{2t_{0}\cos^{2}\alpha}{v_{0}}\left(\frac{m^{2}}{R_{N}} + \frac{h^{2}}{R_{NIP}}\right)$$

Traveltime approximation for 2-D:

$$t_{hyp}^{2} = \left(t_{0} - \frac{2\sin\alpha}{v_{0}}m\right)^{2} + \frac{2t_{0}\cos^{2}\alpha}{v_{0}}\left(\frac{m^{2}}{R_{N}} + \frac{h^{2}}{R_{NIP}}\right)$$

 α emergence angle of normal ray R_{NIP}, R_N local radii of NIP and normal wavefronts v_0 near-surface velocity t_0 zero-offset traveltimehhalf-offset between shot and receivermmidpoint displacement

Extension to 3-D ZO (I)

p.9

$$\vec{h} = \frac{1}{2} \begin{pmatrix} x_G - x_S \\ y_G - y_S \end{pmatrix}$$

$$\vec{m} = \frac{1}{2} \begin{pmatrix} x_G + x_S \\ y_G + y_S \end{pmatrix}$$

$$\vec{m} = \frac{1}{2} \begin{pmatrix} x_G + x_S \\ y_G + y_S \end{pmatrix}$$

$$\vec{R} \otimes \mathbf{R}^*$$
Reflector
EAGE Conference & Exhibition, Florence 2002

WIT

Extension to 3-D ZO (II)

Hypothetical experiments for ZO in 3-D

Traveltime approximation for 3-D:

$$t_{hyp}^2 = \left(t_0 - \frac{2}{v_0}\vec{c}\cdot\vec{m}\right)^2 + \frac{2t_0}{v_0}\left(\vec{m}^T\underline{A}\vec{m} + \vec{h}^T\underline{B}\vec{h}\right)$$

Traveltime approximation for 3-D:

$$t_{hyp}^2 = \left(t_0 - \frac{2}{v_0}\vec{c}\cdot\vec{m}\right)^2 + \frac{2t_0}{v_0}\left(\vec{m}^T\underline{A}\vec{m} + \vec{h}^T\underline{B}\vec{h}\right)$$

- propagation direction of wavefronts \vec{C}
- curvatures of NIP and normal wavefronts B,A
- near-surface velocity v_0
- zero-offset traveltime
- t_0 \vec{h} half-offset vector between shot and receiver
- \vec{m} midpoint displacement vector

Extension to 2-D FO

Differences to the ZO case:

Extension to 2-D FO

Differences to the ZO case:

central ray is a finite-offset ray

- central ray is a finite-offset ray
- downgoing and upgoing ray branches no longer coincide

- central ray is a finite-offset ray
- downgoing and upgoing ray branches no longer coincide

Consequences:

- central ray is a finite-offset ray
- downgoing and upgoing ray branches no longer coincide
- Consequences:
 - other hypothetical experiments required

- central ray is a finite-offset ray
- downgoing and upgoing ray branches no longer coincide
- Consequences:
 - other hypothetical experiments required
 - common-shot experiment
 - common-midpoint experiment

- central ray is a finite-offset ray
- downgoing and upgoing ray branches no longer coincide
- Consequences:
 - other hypothetical experiments required
 - increased number of wavefield attributes

- central ray is a finite-offset ray
- downgoing and upgoing ray branches no longer coincide

Consequences:

- other hypothetical experiments required
- increased number of wavefield attributes
 - three wavefront curvatures
 - two propagation directions

Multi-parameter moveout operators for data-oriented stacking

2-D zero-offset 3 parameters

Multi-parameter moveout operators for data-oriented stacking

2-D zero-offset 3 parameters

Multi-parameter moveout operators for data-oriented stacking

2-D zero-offset 3 parameters

2-D finite-offset5 parameters

3-D zero-offset 8 parameters

Multi-parameter moveout operators for data-oriented stacking

 curvature of surface almost constant within stacking aperture

- curvature of surface almost constant within stacking aperture
- second-order approximation of traveltimes remains valid

- curvature of surface almost constant within stacking aperture
- second-order approximation of traveltimes remains valid
- but: attributes lose their geometrical meaning

- curvature of surface almost constant within stacking aperture
- second-order approximation of traveltimes remains valid
- but: attributes lose their geometrical meaning
- subsequent transformation of attributes

- curvature of surface almost constant within stacking aperture
- second-order approximation of traveltimes remains valid
- but: attributes lose their geometrical meaning
- subsequent transformation of attributes
 with local dip of acquisition surface

- curvature of surface almost constant within stacking aperture
- second-order approximation of traveltimes remains valid
- but: attributes lose their geometrical meaning
- subsequent transformation of attributes
 - with local dip of acquisition surface
 - with local curvature of acquisition surface

explicit consideration of shot and receiver elevation required

- explicit consideration of shot and receiver elevation required
- propagation directions and near-surface velocity provide corrections

- explicit consideration of shot and receiver elevation required
- propagation directions and near-surface velocity provide corrections
- includes redatuming within first layer

- explicit consideration of shot and receiver elevation required
- propagation directions and near-surface velocity provide corrections
- includes redatuming within first layer
- applicable to all configurations, 2-D/3-D, ZO/FO

- explicit consideration of shot and receiver elevation required
- propagation directions and near-surface velocity provide corrections
- includes redatuming within first layer
- applicable to all configurations, 2-D/3-D, ZO/FO
- geometrical meaning of the attributes is preserved and refers to chosen datum

Topography (III)

New features of the CRS stack method:central ray can be chosen arbitrarily

- central ray can be chosen arbitrarily
- any arbitrary configuration can be simulated

- central ray can be chosen arbitrarily
- any arbitrary configuration can be simulated
- applicable to 2-D and 3-D data

Conclusions

- central ray can be chosen arbitrarily
- any arbitrary configuration can be simulated
- applicable to 2-D and 3-D data
- topography can be considered for known near-surface velocity

Conclusions

- central ray can be chosen arbitrarily
- any arbitrary configuration can be simulated
- applicable to 2-D and 3-D data
- topography can be considered for known near-surface velocity
 - with a smooth model of the acquisition surface

Conclusions

- central ray can be chosen arbitrarily
- any arbitrary configuration can be simulated
- applicable to 2-D and 3-D data
- topography can be considered for known near-surface velocity
 - with a smooth model of the acquisition surface
 - or actual source/receiver elevations for complex topography

 development of efficient strategies for the 3-D application

- development of efficient strategies for the 3-D application
 - for poor azimuthal coverage (marine data)

- development of efficient strategies for the 3-D application
 - for poor azimuthal coverage (marine data)
 - for regular azimuthal coverage (land data)

development of efficient strategies for the 3-D application
 for poor azimuthal coverage (marine data)
 for regular azimuthal coverage (land data)
 implementation of 2-D FO CRS stack (completed)

- development of efficient strategies for the 3-D application
 - for poor azimuthal coverage (marine data)
 - for regular azimuthal coverage (land data)
- implementation of 2-D FO CRS stack (completed)
- implementation of 2-D CRS stack with topography (in progress)

- development of efficient strategies for the 3-D application
 - for poor azimuthal coverage (marine data)
 - for regular azimuthal coverage (land data)
- implementation of 2-D FO CRS stack (completed)
- implementation of 2-D CRS stack with topography (in progress)
- implementation of the 3-D counterparts

Acknowledgments

This works was supported by the sponsors of the *Wave Inversion Technology Consortium.*

B003	Stacking velocity analysis with CRS Stack attributes
B015	3D zero-offset Common Reflection Surface Stack for land data – real data example
B016	Improved resolution in time and depth processing by macromodel independent CRS Stacking
P165	Topographic correction using CRS parameters
P165 P166	Topographic correction using CRS parameters 2D and 3D ZO CRS stack for a complex top-surface topography