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W I T Basic concepts (I)

Basic ideas:

entirely data-oriented approach

no explicit parameterization of depth model

Inherent assumptions:

coherent reflection events exist in the pre-stack
data

paraxial approximation holds in vicinity of
central ray
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W I T Basic concepts (II)

Establish relationship between

subsurface reflector segment and

its kinematic reflection response in the
pre-stack time domain

by means of hypothetical experiments.

Parameters or CRS wavefield attributes:

curvatures of hypothetical wavefronts

their propagation directions
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W I T Basic concepts (III)

Spatial CRS stacking operator:

parameterized by CRS wavefield attributes

actual properties of reflector segment
not required

second-order approximation of reflection
traveltime

determination by means of coherence analysis
in pre-stack data

generalization of well-known velocity analysis
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W I T Simplest case: 2-D ZO (I)
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W I T Simplest case: 2-D ZO (II)

Traveltime approximation for 2-D:
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α emergence angle of normal ray
RNIP,RN local radii of NIP and normal wavefronts
v0 near-surface velocity
t0 zero-offset traveltime
h half-offset between shot and receiver
m midpoint displacement
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W I T Extension to 3-D ZO (I)
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W I T Extension to 3-D ZO (II)

Hypothetical experiments for ZO in 3-D
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W I T Extension to 3-D ZO (III)

Traveltime approximation for 3-D:
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~h half-offset vector between shot and receiver
~m midpoint displacement vector
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W I T Extension to 2-D FO

Differences to the ZO case:

central ray is a finite-offset ray

downgoing and upgoing ray branches no
longer coincide

Consequences:

other hypothetical experiments required

increased number of wavefield attributes
three wavefront curvatures
two propagation directions
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W I T Summary of extensions

Multi-parameter moveout operators
for data-oriented stacking

2-D zero-offset
3 parameters

2-D finite-offset
5 parameters

3-D zero-offset
8 parameters

3-D finite-offset
13 parameters
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W I T Topography (I)

Case I: “smooth” topography

curvature of surface almost constant within
stacking aperture

second-order approximation of traveltimes
remains valid

but: attributes lose their geometrical meaning

subsequent transformation of attributes
with local dip of acquisition surface
with local curvature of acquisition surface
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W I T Topography (II)

Case II: “rugged” topography

explicit consideration of shot and receiver
elevation required

propagation directions and near-surface
velocity provide corrections

includes redatuming within first layer

applicable to all configurations, 2-D/3-D, ZO/FO

geometrical meaning of the attributes is
preserved and refers to chosen datum
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W I T Topography (III)
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W I T Conclusions

New features of the CRS stack method:

central ray can be chosen arbitrarily

any arbitrary configuration can be simulated

applicable to 2-D and 3-D data

topography can be considered for known
near-surface velocity

with a smooth model of the acquisition
surface
or actual source/receiver elevations for
complex topography
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W I T Outlook

development of efficient strategies for the
3-D application

for poor azimuthal coverage (marine data)
for regular azimuthal coverage (land data)

implementation of 2-D FO CRS stack
(completed)

implementation of 2-D CRS stack with
topography (in progress)

implementation of the 3-D counterparts
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