# Event-consistent smoothing and automated picking in CRS-based seismic imaging

Tilman Klüver and Jürgen Mann

Wave Inversion Technology (WIT) Geophysical Institute, University of Karlsruhe (TH)



November 8, 2005

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

3D CRS stack NIP waves **CRS** tomography Workflow



▲□▶ ▲□▶ 少へで

## **Overview**

### Introduction

- 3D Common-Reflection-Surface (CRS) stack
- Velocity determination with 3D CRS attributes
- **CRS-based workflow**
- The event-aligned volume
- **Event-consistent smoothing**
- **Automated picking**
- Results
- Conclusions

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



- The Common-Reflection-Surface (CRS) stack provides
  - high S/N stacked ZO volume
  - coherence value for each sample
  - kinematic wavefield attributes for each sample
  - generalised, high density stacking velocity analysis
- The CRS attributes can further be used for many applications, e.g.:
  - calculation of projected Fresnel zone and geometrical spreading factor
  - improved AVO-analysis
  - tomographic determination of macro-velocity models

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

#### Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



- The Common-Reflection-Surface (CRS) stack provides
  - high S/N stacked ZO volume
  - coherence value for each sample
  - kinematic wavefield attributes for each sample
  - generalised, high density stacking velocity analysis
- The CRS attributes can further be used for many applications, e.g.:
  - calculation of projected Fresnel zone and geometrical spreading factor
  - improved AVO-analysis
  - tomographic determination of macro-velocity models

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

#### Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



### CRS attributes are subject to

- outliers
- non-physical fluctuations

### Attribute-based applications are impaired

 Application considered here: Tomographic determination of macro-velocity models using CRS-attributes 75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

#### Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



- CRS attributes are subject to
  - outliers
  - non-physical fluctuations
- Attribute-based applications are impaired
  - Application considered here: Tomographic determination of macro-velocity models using CRS-attributes

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



- CRS attributes are subject to
  - outliers
  - non-physical fluctuations
- Attribute-based applications are impaired
  - Application considered here: Tomographic determination of macro-velocity models using CRS-attributes

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



### CRS tomography

- Advantages:
  - picking in simulated ZO volume of high S/N ratio (output of CRS)
  - pick locations independent of each other
  - very few picks required
- Quality of result depends on quality of input CRS attributes

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



### CRS tomography

- Advantages:
  - picking in simulated ZO volume of high S/N ratio (output of CRS)
  - pick locations independent of each other
  - very few picks required
- Quality of result depends on quality of input CRS attributes

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

#### Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



### CRS – stack

### Smoothing

### optional restacking

automated picking

NIP-wave tomography

### Migration

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

#### Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

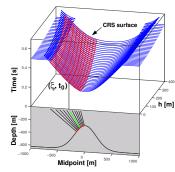
Event-aligned volume

Smoothing

Picking

Results

Conclusions




◆□ ▶ ▲□ ▶ クタマ

### **3D CRS attributes**

Traveltime depends on eight attributes:

$$t^{2}(\Delta \boldsymbol{\xi}, \mathbf{h}) = (t_{0} + 2\mathbf{p}_{\boldsymbol{\xi}} \cdot \Delta \boldsymbol{\xi})^{2} + 2t_{0} \left(\Delta \boldsymbol{\xi}^{T} \mathbf{M}_{\boldsymbol{\xi}} \Delta \boldsymbol{\xi} + \mathbf{h}^{T} \mathbf{M}_{\boldsymbol{h}} \mathbf{h}\right)$$



$$\mathbf{p}_{\xi} = \frac{1}{v_0} (\sin \alpha \cos \psi, \sin \alpha \sin \psi)^T$$
$$\mathbf{M}_h = \frac{1}{v_0} \mathbf{D} \mathbf{K}_{\text{NIP}} \mathbf{D}^T$$
$$\mathbf{M}_{\xi} = \frac{1}{v_0} \mathbf{D} \mathbf{K}_{\text{N}} \mathbf{D}^T$$
$$\text{NIP: normal incidence point}$$

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction

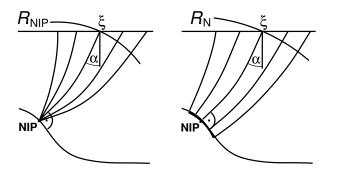
3D CRS stack

Velocity determination NIP waves CRS tomography

Event-aligned volume

Smoothing

Picking


Results



### **3D CRS attributes**

Traveltime depends on eight attributes:

$$t^{2}(\Delta \boldsymbol{\xi}, \mathbf{h}) = (t_{0} + 2\mathbf{p}_{\boldsymbol{\xi}} \cdot \Delta \boldsymbol{\xi})^{2} + 2t_{0} \left(\Delta \boldsymbol{\xi}^{T} \mathbf{M}_{\boldsymbol{\xi}} \ \Delta \boldsymbol{\xi} + \mathbf{h}^{T} \mathbf{M}_{\boldsymbol{h}} \mathbf{h}\right)$$



75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

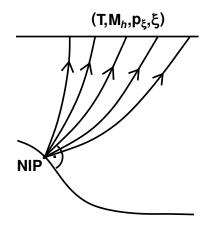
Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Event-aligned volume


Smoothing

Picking

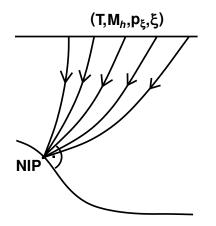
Results



### **NIP** waves and velocities



CRS attributes  $\mathbf{M}_h$  and  $\mathbf{p}_{\xi}$  at  $(t_0, \xi)$  describe second-order traveltime approximation of emerging NIP wave.


### 75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

**3D CRS stack** Velocity determination NIP waves **CRS** tomography Workflow



### **NIP** waves and velocities



In consistent velocity models, NIP waves focus at zero traveltime.

### 75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

**3D CRS stack** Velocity determination NIP waves CRS tomography Workflow



# Tomography with CRS attributes

Find a velocity model in which all considered NIP waves, described by kinematic wavefield attributes, are correctly modelled.

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

3D CRS stack Velocity determination NIP waves

CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



# Tomography with CRS attributes

Find a velocity model in which all considered NIP waves, described by kinematic wavefield attributes, are correctly modelled.

Remark:

in 3D,  $\mathbf{M}_h$  is only required for one azimuth.

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Event-aligned volume Smoothing Picking Results Conclusions



CRS - stack

NIP-wave tomography

Migration

75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results

Conclusions



・ロマ ・日マ ふくつ

CRS - stack

NIP-wave tomography

Migration

 fluctuations in CRS attributes, which are not consistent with theory, influence the inversion result

 manual picking is very time consuming, especially in 3D 75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

event-aligned volume Smoothing Picking

Results



CRS - stack

NIP-wave tomography

Migration

- fluctuations in CRS attributes, which are not consistent with theory, influence the inversion result
- manual picking is very time consuming, especially in 3D

75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



CRS - stack

NIP-wave tomography

Migration

How to remove outliers and fluctuations in the attributes?

Where to pick the limited number of locally coherent reflection events needed in NIP-wave tomography?

How to do this automatically?

75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

Introduction 3D CRS stack

Velocity determination NIP waves CRS tomography

#### Workflow

Event-aligned volume Smoothing Picking Results Conclusions



▲□▶ ▲□▶ 少々で

CRS - stack

NIP-wave tomography

Migration

- How to remove outliers and fluctuations in the attributes?
- Where to pick the limited number of locally coherent reflection events needed in NIP-wave tomography?

How to do this automatically?

75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography

Workflow

Event-aligned volume Smoothing Picking Results Conclusions



CRS - stack

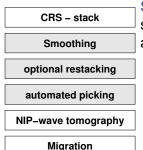
NIP-wave tomography

Migration

- How to remove outliers and fluctuations in the attributes?
- Where to pick the limited number of locally coherent reflection events needed in NIP-wave tomography?
- How to do this automatically?

75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann


Introduction 3D CRS stack

/elocity determination NIP waves CRS tomography

#### Workflow

Event-aligned volume Smoothing Picking Results Conclusions





### Strategy

smoothing and picking in volumes aligned with reflection events:

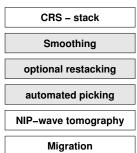
- volume size defines locality
- usage of locally valid statistics
  to remove outliers and fluctuations
  - to identify valid pick locations

### 75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

Introduction

3D CRS stack


Velocity determination NIP waves CRS tomography

#### Workflow

Event-aligned volume Smoothing Picking Results Conclusions



(日) (日) (日)



### Strategy

smoothing and picking in volumes aligned with reflection events:

- volume size defines locality
- usage of locally valid statistics
- to remove outliers and fluctuations
  - to identify valid pick locations

75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

Introduction

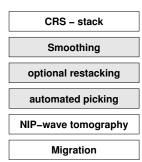
3D CRS stack

Velocity determination NIP waves CRS tomography

#### Workflow

Event-aligned volume

Smoothing


Picking

Results

Conclusions



◆□ ▶ ◆□ ▶ クへで



### Strategy

smoothing and picking in volumes aligned with reflection events:

- volume size defines locality
- usage of locally valid statistics
- to remove outliers and fluctuations
  - to identify valid pick locations

### 75<sup>th</sup> SEG Annual Meeting, Houston 2005

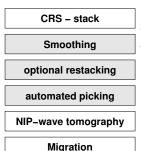
Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow


Event-aligned volume

Smoothing

Picking

Results





### Strategy

smoothing and picking in volumes aligned with reflection events:

- volume size defines locality
- usage of locally valid statistics
- to remove outliers and fluctuations

to identify valid pick locations

### 75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

Introduction

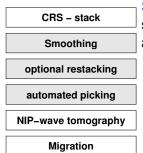
3D CRS stack

Velocity determination NIP waves CRS tomography

#### Workflow

Event-aligned volume

Smoothing


Picking

Results

Conclusions



▲□▶ ▲母▼ 少々ぐ



### Strategy

smoothing and picking in volumes aligned with reflection events:

- volume size defines locality
- usage of locally valid statistics
- to remove outliers and fluctuations
- to identify valid pick locations

### 75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

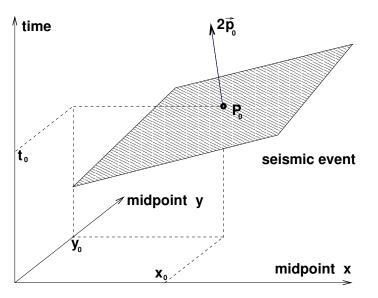
Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Event-aligned volume


Smoothing

Picking

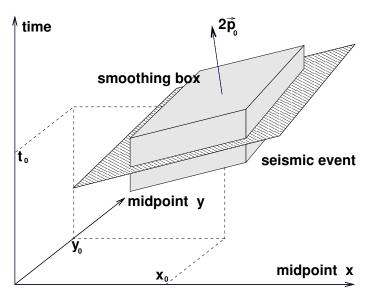
Results



# **Event-aligned volume**



75<sup>th</sup> SEG Annual Meeting, Houston 2005


Klüver & Mann

Introduction Velocity determination **NIP** waves CRS tomography Event-aligned volume



< □ > < □ > < □ > < ○<</p>

# **Event-aligned volume**



### 75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

3D CRS stack Velocity determination NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



# **Detection of intersecting events**

slowness vector:

$$\mathbf{p}_{\xi} = \frac{1}{v_0} \left( \cos \alpha \sin \beta, \sin \alpha \sin \beta, \cos \beta \right)^{T}$$

75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results

Conclusions



・日マ ・日マ シタイ

# **Detection of intersecting events**

slowness vector:

$$\mathbf{p}_{\xi} = \frac{1}{v_0} \left( \cos \alpha \sin \beta, \sin \alpha \sin \beta, \cos \beta \right)^T$$

unit-normal vector to NIP-wavefront:

$$\mathbf{n} = (\cos\alpha\sin\beta, \sin\alpha\sin\beta, \cos\beta)^T$$

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction 3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



# **Detection of intersecting events**

slowness vector:

$$\mathbf{p}_{\xi} = \frac{1}{v_0} \left( \cos \alpha \sin \beta, \sin \alpha \sin \beta, \cos \beta \right)^T$$

unit-normal vector to NIP-wavefront:

$$\mathbf{n} = (\cos \alpha \sin \beta, \sin \alpha \sin \beta, \cos \beta)^T$$

event discrimination by dip difference:

 $\theta = \arccos(\mathbf{n}_1 \cdot \mathbf{n}_2).$ 

75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



For each zero-offset sample and CRS-parameter:

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
  - avoid mixing of events
- apply combined filter:
  - median filter by remove outliers
  - averaging by remove fluctuations
- assign result to zero-offset sample

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



For each zero-offset sample and CRS-parameter:

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
  - avoid mixing of events
- apply combined filter:
  - median filter b remove outliers
  - averaging by remove fluctuations
- assign result to zero-offset sample

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results

Conclusions



▲□▶ ▲□▶ 少々で

For each zero-offset sample and CRS-parameter:

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
  - avoid mixing of events
- apply combined filter:
  - median filter by remove outliers
  - averaging by remove fluctuations
- assign result to zero-offset sample

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results

Conclusions



▲□▶ ▲□▶ 少々で

For each zero-offset sample and CRS-parameter:

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
  - avoid mixing of events
- apply combined filter:
  - ► median filter ⇒ remove outliers
  - averaging 
     remove fluctuations

assign result to zero-offset sample

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results



### **Event-consistent smoothing**

For each zero-offset sample and CRS-parameter:

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
  - avoid mixing of events
- apply combined filter:
  - ► median filter ⇒ remove outliers
  - averaging by remove fluctuations
- assign result to zero-offset sample

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction

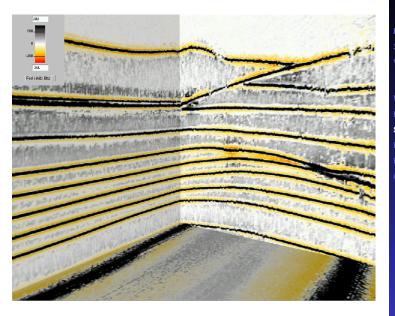
3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing


Picking

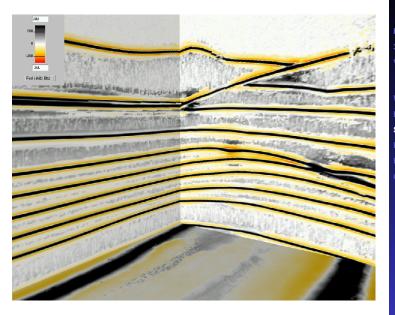
Results

Conclusions



### Stack, unsmoothed attributes




### 75<sup>th</sup> SEG Annual Meeting, Houston 2005

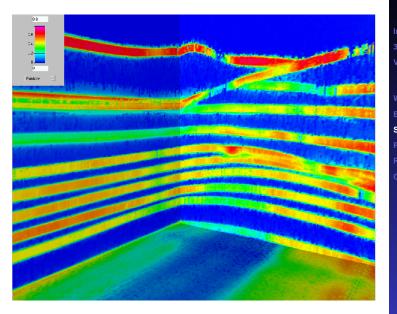
Klüver & Mann

Introduction Velocity determination **NIP** waves CRS tomography Smoothing



### Stack, smoothed attributes




### 75<sup>th</sup> SEG Annual Meeting, Houston 2005

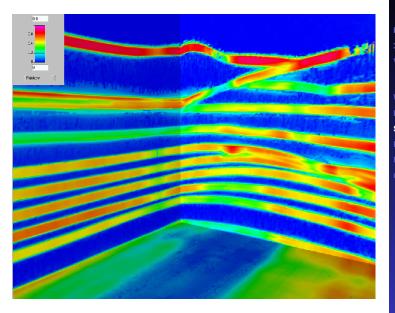
Klüver & Mann

Introduction Velocity determination **NIP** waves CRS tomography Smoothing



### Coherence, unsmoothed attributes




#### 75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction Velocity determination **NIP** waves CRS tomography Smoothing



▲□▶ ▲母 ▶ එ�?

### **Coherence, smoothed attributes**



### 75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Event-aligned volume Smoothing Picking Results



▲□▶ ▲母 ▶ 釣�?

### For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
  - is below a given coherence threshold or
  - has a dip difference exceeding a given thresholder
- or if amplitude is below a user-defined threshold
- continue on selected trace

75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

3D CRS stack Velocity determination NIP waves **CRS** tomography Workflow Pickina



For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
  - is below a given coherence threshold or
  - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold

continue on selected trace

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann



For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
  - is below a given coherence threshold or
  - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
  - prefer high-energy events
- continue on selected trace

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann



For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
  - is below a given coherence threshold or
  - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
  prefer high-energy events
- continue on selected trace

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann



For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
  - is below a given coherence threshold or
  - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
  - prefer high-energy events
- continue on selected trace

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

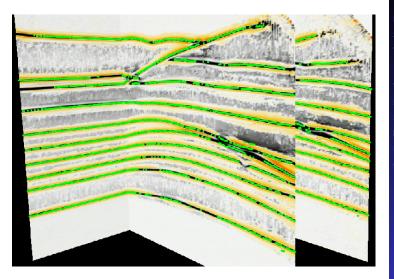


For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
  - is below a given coherence threshold or
  - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
  - prefer high-energy events
- continue on selected trace

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann




For each selected trace

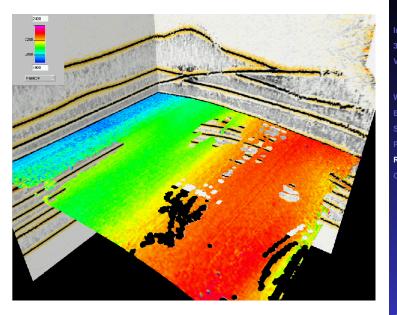
- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
  - is below a given coherence threshold or
  - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
  - prefer high-energy events
- continue on selected trace

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann



### **Picks on selected sections**



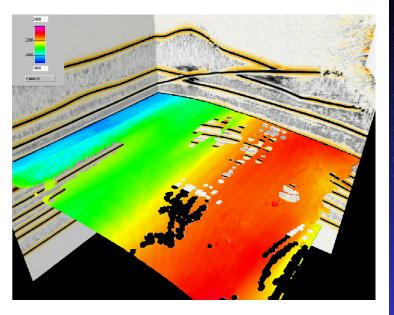

#### 75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Event-aligned volume Smoothing Picking Results Conclusions



▲□▶ ▲母 ▶ 釣�?

## **Stacking velocity**

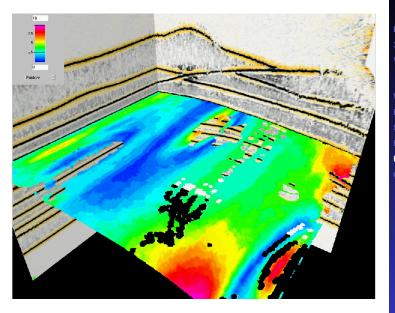



#### 75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Event-aligned volume Smoothing Picking Results Conclusions



### "Smoothed" stacking velocity

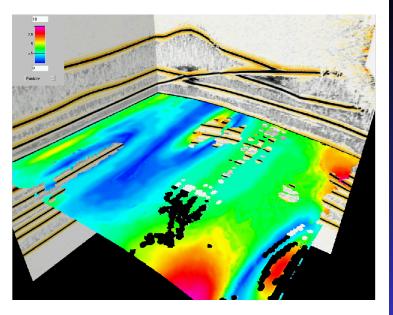



#### 75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Event-aligned volume Smoothing Picking Results Conclusions



### Normal ray emergence angle

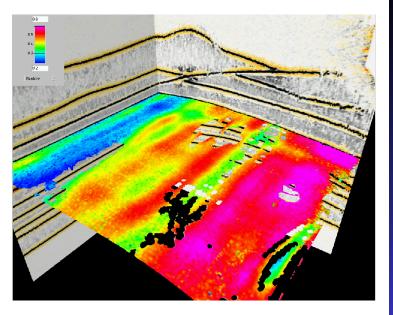



#### 75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Event-aligned volume Smoothing Picking Results Conclusions



### Smoothed normal ray emergence angle



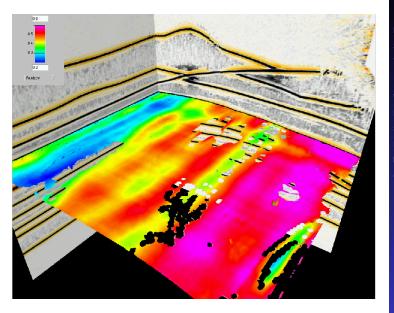

#### 75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Velocity determination NIP waves CRS tomography Results



### **Coherence, unsmoothed attributes**



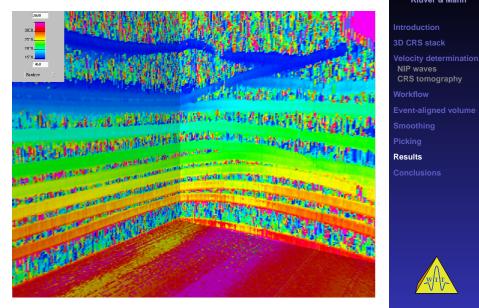

#### 75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Velocity determination NIP waves CRS tomography Results



▲□▶ ▲母 ▶ 釣�?

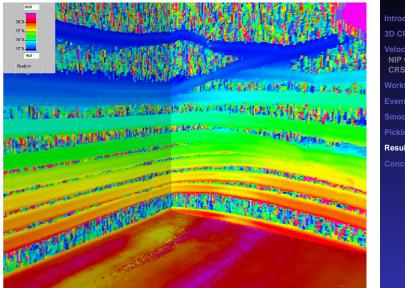
### **Coherence, smoothed attributes**




#### 75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Velocity determination **NIP** waves CRS tomography Results




## **Stacking velocity**

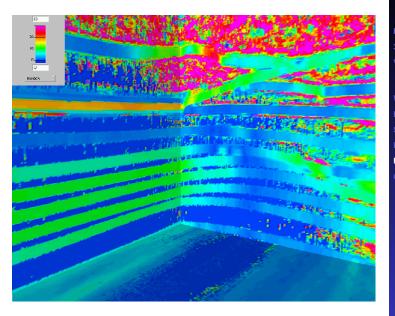


#### 75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

▲□▶ ▲□▶ ろ々⊙

### "Smoothed" stacking velocity



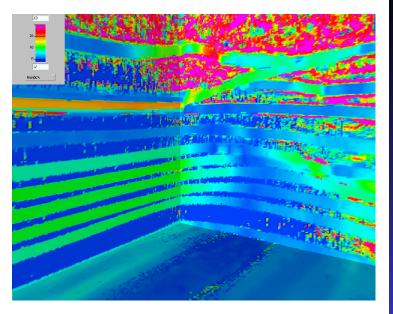

#### 75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Velocity determination NIP waves CRS tomography Results

-----

4 日 × 4 日 × 9 へ 0

### Normal ray emergence angle




#### 75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Velocity determination **NIP** waves **CRS** tomography Results



### Smoothed normal ray emergence angle



### 75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

Velocity determination **NIP** waves CRS tomography Results



< □ ト < □ ト < ○ < ○</p>

### fast and efficient smoothing and picking algorithms

- account for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no interpretation by the user
- smoothing can improve the CRS image significantly
- automated smoothing and picking close the gap between CRS stack and NIP-wave tomography

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Event-aligned volume Smoothing Pickion

Results

Conclusions



- fast and efficient smoothing and picking algorithms
- account for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no interpretation by the user
- smoothing can improve the CRS image significantly
- automated smoothing and picking close the gap between CRS stack and NIP-wave tomography

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

**3D CRS stack** NIP waves **CRS** tomography Workflow Conclusions



- fast and efficient smoothing and picking algorithms
- account for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no interpretation by the user
- smoothing can improve the CRS image significantly
- automated smoothing and picking close the gap between CRS stack and NIP-wave tomography

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Event-aligned volume Smoothing Picking Results Conclusions



- fast and efficient smoothing and picking algorithms
- account for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no interpretation by the user
- smoothing can improve the CRS image significantly
- automated smoothing and picking close the gap between CRS stack and NIP-wave tomography

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Event-aligned volume Smoothing Picking Results Conclusions



- fast and efficient smoothing and picking algorithms
- account for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no interpretation by the user
- smoothing can improve the CRS image significantly
- automated smoothing and picking close the gap between CRS stack and NIP-wave tomography

75<sup>th</sup> SEG Annual Meeting, Houston 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Event-aligned volume Smoothing Picking Results Conclusions



- fast and efficient smoothing and picking algorithms
- account for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no interpretation by the user
- smoothing can improve the CRS image significantly
- automated smoothing and picking close the gap between CRS stack and NIP-wave tomography

3D CRS stack NIP waves **CRS** tomography Workflow Conclusions



### **Acknowledgements**

This work was kindly supported by the sponsors of the Wave Inversion Technology (WIT) consortium, Karlsruhe, Germany and the Federal Ministry of Education and Research, Germany. 75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results

Conclusions



### 75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results

Conclusions



- □ ▶ ▲ 🗗 ▶ めへで

### 75<sup>th</sup> SEG Annual Meeting, Houston 2005

Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Event-aligned volume

Smoothing

Picking

Results

Conclusions



- □ ▶ ▲ 🗗 ▶ めへで