Smoothing and automated picking of kinematic wavefield attributes

Tilman Klüver and Jürgen Mann

Wave Inversion Technology (WIT) Geophysical Institute, University of Karlsruhe (TH)

September 14, 2005

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろ∢で

Overview

Introduction

- 3D Common-Reflection-Surface (CRS) stack
- Velocity determination with 3D CRS attributes
- **CRS-based workflow**
- **Event-consistent smoothing**
- **Automated picking**
- Data example
- Conclusions
- Acknowledgments

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

▲□ ▶ ▲□ ▶ ろへで

- The Common-Reflection-Surface (CRS) stack provides
 - high S/N stacked ZO volume
 - coherence value for each sample
 - kinematic wavefield attributes for each sample
 - generalised, high density stacking velocity analysis
- The CRS attributes can further be used for many applications, e.g.:
 - calculation of projected Fresnel zone and geometrical spreading factor
 - improved AVO-analysis
 - tomographic determination of macro-velocity models

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

▲□▶ ▲母▼ 少々ぐ

- The Common-Reflection-Surface (CRS) stack provides
 - high S/N stacked ZO volume
 - coherence value for each sample
 - kinematic wavefield attributes for each sample
 - generalised, high density stacking velocity analysis
- The CRS attributes can further be used for many applications, e.g.:
 - calculation of projected Fresnel zone and geometrical spreading factor
 - improved AVO-analysis
 - tomographic determination of macro-velocity models

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

CRS attributes are subject to

- outliers
- non-physical fluctuations

Attribute-based applications are impaired

 Application considered here: Tomographic determination of macro-velocity models using CRS attributes 9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ 少々で

CRS attributes are subject to

- outliers
- non-physical fluctuations

Attribute-based applications are impaired

 Application considered here: Tomographic determination of macro-velocity models using CRS attributes 9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▶ 少々で

- CRS attributes are subject to
 - outliers
 - non-physical fluctuations
- Attribute-based applications are impaired
 - Application considered here: Tomographic determination of macro-velocity models using CRS attributes

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

/elocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

CRS tomography

- Advantages:
 - picking in simulated ZO volume of high S/N ratio (output of CRS)
 - pick locations independent of each other
 - very few picks required
- Quality of result depends on quality of input CRS attributes

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

CRS tomography

- Advantages:
 - picking in simulated ZO volume of high S/N ratio (output of CRS)
 - pick locations independent of each other
 - very few picks required
- Quality of result depends on quality of input CRS attributes

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

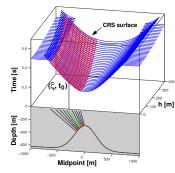
Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions


Acknowledgments

3D CRS attributes

Traveltime depends on eight attributes:

$$t^{2}(\Delta \boldsymbol{\xi}, \mathbf{h}) = (t_{0} + 2\mathbf{p}_{\boldsymbol{\xi}} \cdot \Delta \boldsymbol{\xi})^{2} + 2t_{0} \left(\Delta \boldsymbol{\xi}^{T} \mathbf{M}_{\boldsymbol{\xi}} \Delta \boldsymbol{\xi} + \mathbf{h}^{T} \mathbf{M}_{h} \mathbf{h}\right)$$

$$\mathbf{p}_{\xi} = \frac{1}{v_0} (\sin \alpha \cos \psi, \sin \alpha \sin \psi)^{T}$$
$$\mathbf{M}_{h} = \frac{1}{v_0} \mathbf{D} \mathbf{K}_{\text{NIP}} \mathbf{D}^{T}$$
$$\mathbf{M}_{\xi} = \frac{1}{v_0} \mathbf{D} \mathbf{K}_{\text{N}} \mathbf{D}^{T}$$
NIP: normal incidence point

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

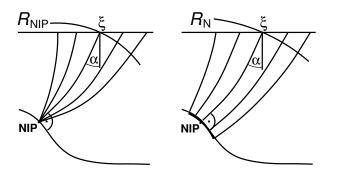
Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks



▲□ ▶ ▲□ ▶ ろくで

3D CRS attributes

Traveltime depends on eight attributes:

$$t^{2}(\Delta \boldsymbol{\xi}, \mathbf{h}) = (t_{0} + 2\mathbf{p}_{\boldsymbol{\xi}} \cdot \Delta \boldsymbol{\xi})^{2} + 2t_{0} \left(\Delta \boldsymbol{\xi}^{T} \mathbf{M}_{\boldsymbol{\xi}} \Delta \boldsymbol{\xi} + \mathbf{h}^{T} \mathbf{M}_{h} \mathbf{h}\right)$$

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

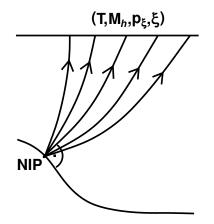
Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions


Acknowledgments

Related talks

▲□▼ ▲□▼ ろく(~

NIP waves and velocities

CRS attributes \mathbf{M}_h and \mathbf{p}_{ξ} at (t_0, ξ) describe second-order traveltime approximation of emerging NIP wave.

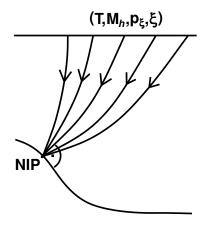
9th SBGf Conference, Salvador 2005 Klüver & Mann

3D CRS stack Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking


Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

NIP waves and velocities

In consistent velocity models, NIP waves focus at zero traveltime.

9th SBGf Conference, Salvador 2005 Klüver & Mann

3D CRS stack Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

◆□ ▶ ▲□ ▶ シタ(や

Tomography with CRS attributes

Find a velocity model in which all considered NIP waves, described by kinematic wavefield attributes, are correctly modelled.

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

・ロマ ・日マ うくで

CRS - stack

NIP-wave tomography

Migration

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

・ロマ ・日マ うくで

CRS - stack

- fluctuations in CRS attributes, which are not consistent with theory, influence the inversion result
- manual picking is very time consuming, especially in 3D

NIP-wave tomography Migration 9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

◆□ ▼ ▲ □ ▼ ◆ □ ▼

CRS - stack

- fluctuations in CRS attributes, which are not consistent with theory, influence the inversion result
- manual picking is very time consuming, especially in 3D

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

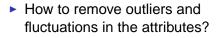
Picking

Data example Attribute volumes Picked attributes

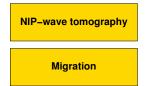
Conclusions

Acknowledgments

Related talks



NIP-wave tomography


Migration

▲□▶ ▲母 ▶ めぐら

CRS - stack

Where to pick the limited number of locally coherent reflection events needed in NIP-wave tomography?

How to do this automatically?

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

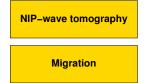
Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments


Related talks

・ロマ ・日マ シタの

CRS – stack

- How to remove outliers and fluctuations in the attributes?
- Where to pick the limited number of locally coherent reflection events needed in NIP-wave tomography?

How to do this automatically?

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

▲□▼ ▲□▼ ろ∢で

CRS – stack

How to remove outliers and fluctuations in the attributes?

Where to pick the limited number of locally coherent reflection events needed in NIP-wave tomography?

How to do this automatically?

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

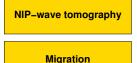
Velocity determinatior NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes


Conclusions

Acknowledgments

Related talks

(口) (日) シタぐ

Strategy

smoothing and picking in volumes aligned with reflection events:

- volume size defines locality
- usage of locally valid statistics
- to remove outliers and fluctuations
 - to identify valid pick locations

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

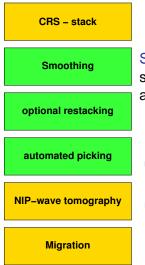
Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes


Conclusions

Acknowledgments

Related talks

◆□ ▶ ▲□ ▶ 少々で

Strategy

smoothing and picking in volumes aligned with reflection events:

- volume size defines locality
- usage of locally valid statistics
- to remove outliers and fluctuations
- to identify valid pick locations

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

・ロマ ・日マ うくで

Strategy

smoothing and picking in volumes aligned with reflection events:

- volume size defines locality
- usage of locally valid statistics
- to remove outliers and fluctuations
- to identify valid pick locations

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

◆□ ▶ ▲□ ▶ 少々で

Strategy

smoothing and picking in volumes aligned with reflection events:

- volume size defines locality
- usage of locally valid statistics
- to remove outliers and fluctuations
- to identify valid pick locations

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

◆□ ▶ ▲□ ▶ 少々で

Strategy

smoothing and picking in volumes aligned with reflection events:

- volume size defines locality
- usage of locally valid statistics
- to remove outliers and fluctuations
- to identify valid pick locations

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

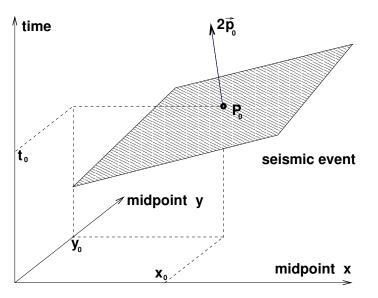
3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking


Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Event-aligned volume

9th SBGf Conference, Salvador 2005 Klüver & Mann

3D CRS stack Velocity determination NIP waves

CRS tomography

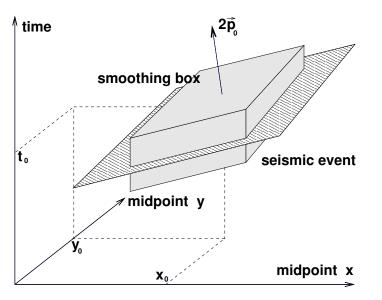
Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions


Acknowledgments

Related talks

< □ > < □ > < □ > < ○<</p>

Event-aligned volume

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

▲□▶ ▲□▼ 少々で

For each zero-offset sample and CRS-parameter:

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
 - avoid mixing of events
- apply combined filter:
 - median filter b remove outliers
 - averaging by remove fluctuations
- assign result to zero-offset sample

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

For each zero-offset sample and CRS-parameter:

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
 - avoid mixing of events
- apply combined filter:
 - median filter b remove outliers
 - averaging by remove fluctuations
- assign result to zero-offset sample

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

For each zero-offset sample and CRS-parameter:

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
 - avoid mixing of events
- apply combined filter:
 - median filter b remove outliers
 - averaging by remove fluctuations
- assign result to zero-offset sample

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

For each zero-offset sample and CRS-parameter:

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
 - avoid mixing of events
- apply combined filter:
 - ► median filter ⇒ remove outliers
 - averaging by remove fluctuations

assign result to zero-offset sample

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

For each zero-offset sample and CRS-parameter:

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
 - avoid mixing of events
- apply combined filter:
 - median filter remove outliers
 - averaging by remove fluctuations
- assign result to zero-offset sample

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

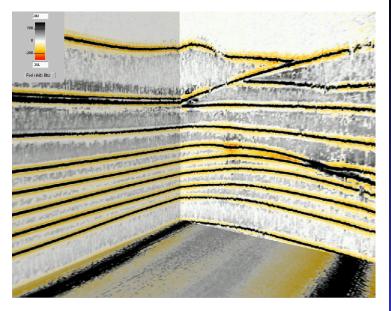
3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Smoothing

Picking


Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Stack, unsmoothed attributes

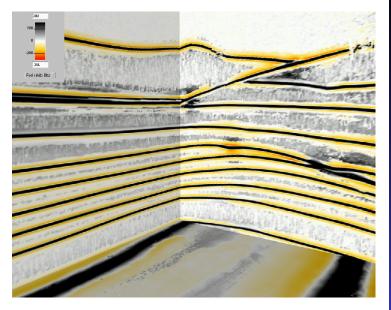
9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography

Workflov

Smoothing

Picking


Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Stack, smoothed attributes

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography

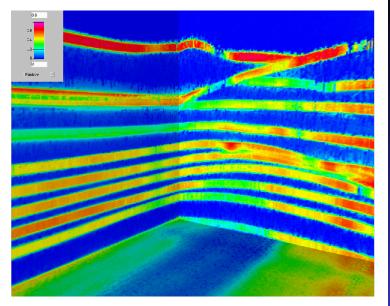
Workflov

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions


Acknowledgments

Related talks

▲□▶ ▲母 ▶ 釣�?

Coherence, unsmoothed attributes

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

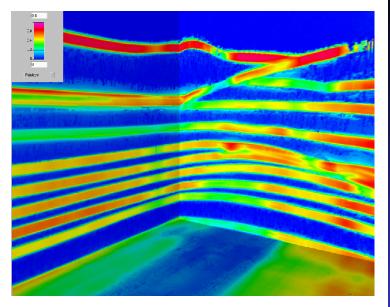
Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions


Acknowledgments

Related talks

▲□▶ ▲母 ▶ 釣�?

Coherence, smoothed attributes

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
 - is below a given coherence threshold or
 - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
- continue on selected trace

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

▲□ ▶ ▲□ ▶ ろくで

For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
 - is below a given coherence threshold or
 - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold

continue on selected trace

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

 $\bullet \square \land \bullet \bullet \blacksquare \land \bullet \circ \land \circ \circ \bullet$

For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
 - is below a given coherence threshold or
 - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
 - prefer high-energy events
- continue on selected trace

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
 - is below a given coherence threshold or
 - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
 prefer high-energy events
- continue on selected trace

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
 - is below a given coherence threshold or
 - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
 - prefer high-energy events
- continue on selected trace

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
 - is below a given coherence threshold or
 - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
 - prefer high-energy events
- continue on selected trace

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
 - is below a given coherence threshold or
 - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
 - prefer high-energy events
- continue on selected trace

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

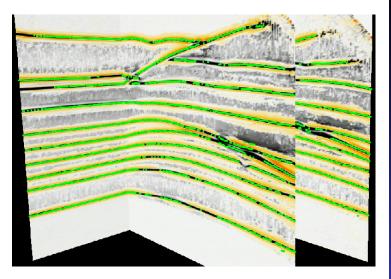
3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking


Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Picks on selected sections

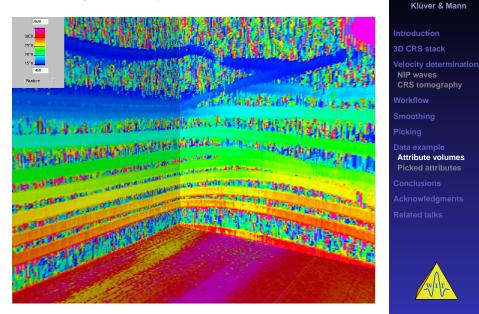
9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow

Picking

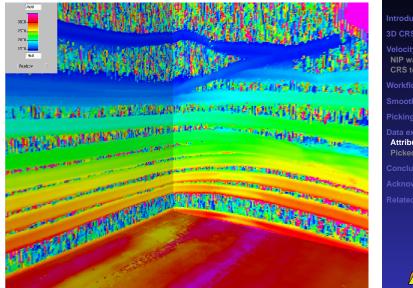
Data example Attribute volumes Picked attributes

Conclusions


Acknowledgments

Related talks

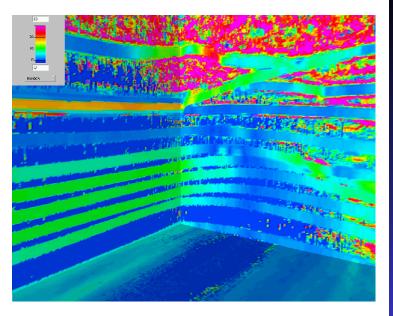
▲□▶ ▲母▼ ろ∢⊙


Stacking velocity

9th SBGf Conference,

Salvador 2005

"Smoothed" stacking velocity

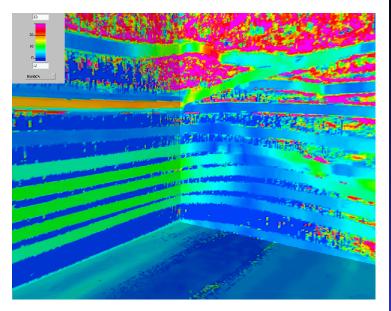

9th SBGf Conference. Salvador 2005 Klüver & Mann

Velocity determination NIP waves CRS tomography Workflow

Attribute volumes Picked attributes

Normal ray emergence angle

9th SBGf Conference, Salvador 2005 Klüver & Mann


Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Smoothing

Data example Attribute volumes Picked attributes Conclusions

Related talks

Smoothed normal ray emergence angle

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

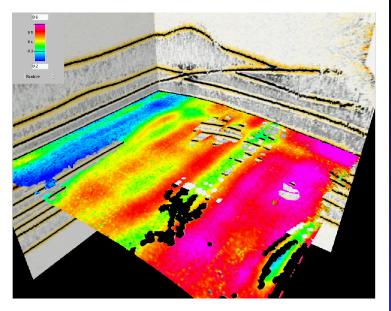
Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

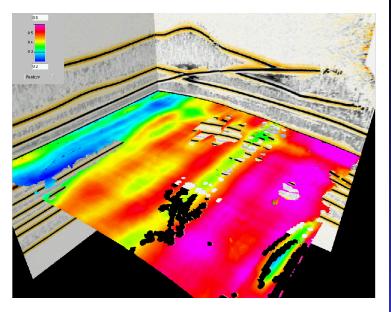

Conclusions

Acknowledgments

▲□▶ ▲□▶ ろへで

Coherence, unsmoothed attributes

9th SBGf Conference, Salvador 2005 Klüver & Mann


Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Smoothing Picking

Data example Attribute volumes Picked attributes

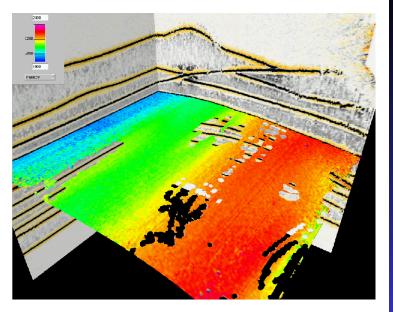
Conclusions Acknowledgment

Coherence, smoothed attributes

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Smoothing Picking

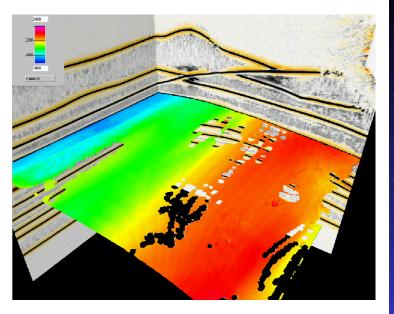
Data example Attribute volumes Picked attributes


Conclusions Acknowledamer

Related talks

▲□▶ ▲□▶ 少々ぐ

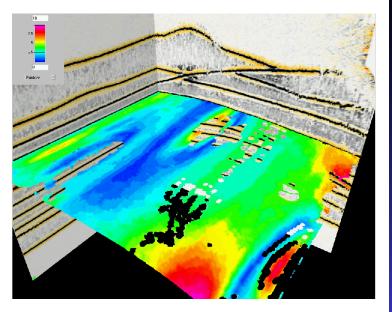
Stacking velocity


9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Smoothing Picking Data example Attribute volumes Picked attributes

Conclusions Acknowledgments

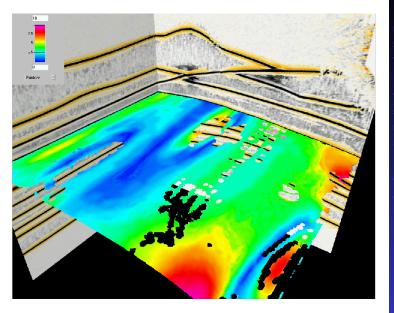
"Smoothed" stacking velocity


9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Smoothing Picking Data example Attribute volumes Picked attributes

Conclusions Acknowledgments Related talks

Normal ray emergence angle


9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Smoothing Picking Data example Attribute volumes Picked attributes

Acknowledgments

Smoothed normal ray emergence angle

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction 3D CRS stack Velocity determination NIP waves CRS tomography Workflow Smoothing Picking

Data example Attribute volumes Picked attributes

Conclusions Acknowledgments

fast and efficient smoothing and picking algorithms

- accounts for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no human interaction required
- smoothing can improve the CRS image significantly
- automated smoothing and picking closes the gap between CRS stack and NIP-wave tomography

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments Related talks

▲□▶ ▲□▶ 少々で

- fast and efficient smoothing and picking algorithms
- accounts for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no human interaction required
- smoothing can improve the CRS image significantly
- automated smoothing and picking closes the gap between CRS stack and NIP-wave tomography

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments Related talks

▲□▶ ▲□▶ 少々で

- fast and efficient smoothing and picking algorithms
- accounts for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no human interaction required
- smoothing can improve the CRS image significantly
- automated smoothing and picking closes the gap between CRS stack and NIP-wave tomography

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

/elocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments Related talks

▲□▶ ▲□▶ 少々で

- fast and efficient smoothing and picking algorithms
- accounts for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no human interaction required
- smoothing can improve the CRS image significantly
- automated smoothing and picking closes the gap between CRS stack and NIP-wave tomography

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments Related talks

▲□▼ ▲□▼ ろ∢で

- fast and efficient smoothing and picking algorithms
- accounts for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no human interaction required
- smoothing can improve the CRS image significantly
- automated smoothing and picking closes the gap between CRS stack and NIP-wave tomography

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments Related talks

●□▶ ●□▼ シタ(で)

- fast and efficient smoothing and picking algorithms
- accounts for neighbouring information using windows aligned with reflection events
- no mixing of intersecting events
- no human interaction required
- smoothing can improve the CRS image significantly
- automated smoothing and picking closes the gap between CRS stack and NIP-wave tomography

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments Related talks

(ロ) (日) (日)

Acknowledgements

This work was kindly supported by the sponsors of the Wave Inversion Technology (WIT) consortium, Karlsruhe, Germany and the Federal Ministry of Education and Research, Germany. 9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determinatior NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

●□▶ ●□▼ シタ(で)

Related presentations

Workshop WS-2 "Velocity analysis for depth imaging", Monday afternoon:

13:30 Common-Reflection-Surface stack – a generalized stacking velocity analysis tool

Session "Seismic Imaging", Wednesday morning:

- 09:45 CRS-stack-based seismic imaging for land data and complex near-surface conditions
- 11:00 True-amplitude CRS-based Kirchhoff time migration for AVO analysis
- 11:25 Common-Reflection-Surface stack for OBS and VSP geometries and multi-component seismic reflection data

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

▲□▶ ▲酉 ▶ 少々で

9th SBGf Conference, Salvador 2005 Klüver & Mann

Introduction

3D CRS stack

Velocity determination NIP waves CRS tomography

Workflow

Smoothing

Picking

Data example Attribute volumes Picked attributes

Conclusions

Acknowledgments

Related talks

- ロ ト ・ 白 ト う へ ()・