Tomographic inversion with CRS attributes: data extraction and preconditioning

Tilman Klüver and Jürgen Mann

Geophysical Institute, University of Karlsruhe (TH)

09/22/2006

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction

Data example

Conclusions

Overview

Introduction

Velocity determination with 3D CRS attributes

Attribute preconditioning and extraction

Synthetic data example

Conclusions

Acknowledgments

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction

Data example

Conclusions

Introduction

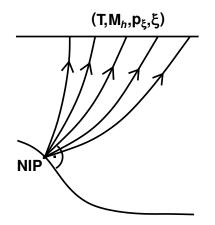
Construction of a background/migration velocity model is one of the key aims of seismic imaging schemes.

- Problems with conventional reflection tomography: identifying and picking events in the prestack data
- 3D velocity models for depth imaging
- Tomographic approach based on CRS stack results
- Advantages:
 - picking in simulated ZO volume of high S/N ratio
 - pick locations independent of each other
 - very few picks required

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example


Preconditioning... Basics Smoothing Extraction

Data example

Conclusions

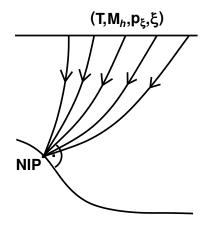
NIP waves and velocities

CRS attributes \mathbf{M}_h and $\mathbf{p}_{\boldsymbol{\xi}}$ at $(t_0, \boldsymbol{\xi})$ describe second-order traveltime approximation of emerging NIP wave.

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example


Preconditioning… Basics Smoothing Extraction

Data example

Conclusions

NIP waves and velocities

In consistent velocity models, NIP waves focus at zero traveltime.

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning… Basics Smoothing Extraction

Data example

Conclusions

Tomography with CRS attributes

Find a velocity model in which all considered NIP waves, described by kinematic wavefield attributes, are correctly modeled.

For tomographic inversion in 3D, one azimuth ϕ of \mathbf{M}_h is required: M_{ϕ} .

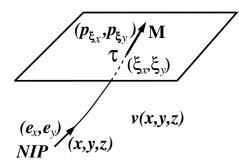
For multi-azimuth data the full Matrix \mathbf{M}_h is to be preferred.

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction


Data example

Conclusions

3D tomography with CRS attributes

Data and model components

Data: $(\tau, M_{11}, M_{12}, M_{22}, p_{\xi_x}, p_{\xi_y}, \xi_x, \xi_y)_i$ $\tau = t_0/2$ Model: $(x, y, z, e_x, e_y)_i, v_{jkl}$ v_{jkl} : B-spline coefficients CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction

Data example

Conclusions

Inversion procedure

nonlinear least-squares problem:

- iterative solution, local linearization
- τ , p_{ξ_x} , p_{ξ_y} , ξ_x , ξ_y from kinematic ray tracing
- $\mathbf{M}_h = \mathbf{D} \mathbf{B}^{-1}$ from dynamic ray-tracing:

$$\mathbf{T} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}$$

propagator matrix in Cartesian coordinates

- ► model update Δm: least-squares solution of FΔm = Δd
- calculation of Fréchet derivatives (matrix F): ray perturbation theory

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction

Data example

Conclusions

Regularization/additional constraints

Regularization:

 minimization of second derivatives of velocity (spatially dependent)

Additional constraints:

- v(x, y, z) values at arbitrary locations (x, y, z)
- force velocity structure to follow local reflector structure

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction

Data example

Conclusions

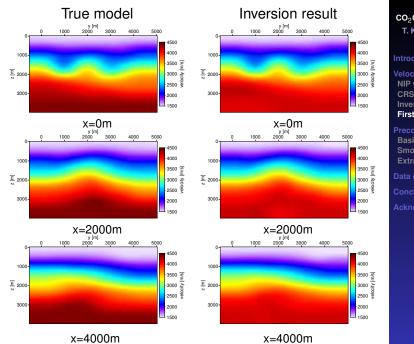
Synthetic example: forward modeled attributes

Model description:

- $9 \times 9 \times 9 = 729$ B-spline knots
- horizontal spacing: 500 m
- vertical spacing: 400 m
- 1008 NIP-locations used to model the input data
- initial ray direction follows local velocity gradient

CO₂CRS: Tomography T. Klüver & J. Mann

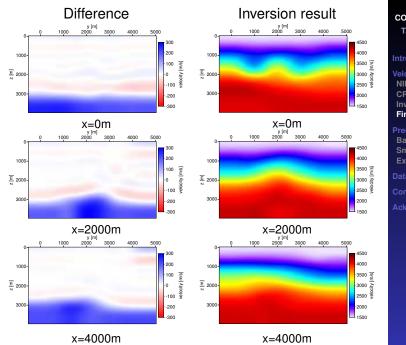
Introduction


Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction

Data example

Conclusions


CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction

Data example

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction

Data example

Motivation

CRS attributes have characteristic features:

- they should be constant along the wavelet
- they should vary smoothly along the event

However, in practice

- unphysical fluctuations
- outliers
- possibly not locally coherent

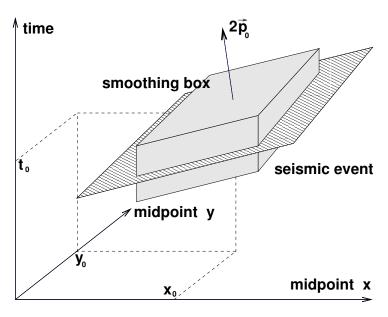
Thus

- event-consistent smoothing
- identification of valid pick locations

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example


Preconditioning.. Basics Smoothing Extraction

Data example

Conclusions

The event-aligned volume

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning.. Basics Smoothing Extraction

Data example

Conclusion

Event-consistent smoothing

For each zero-offset sample and CRS-parameter

- align smoothing volume with reflection event using first traveltime derivatives
- reject samples below user-defined coherence threshold
- reject samples with dip difference beyond user-defined threshold
 - avoid mixing of events
- apply combined filter:
 - median filter remove outliers
 - averaging by remove fluctuations
- assign result to zero-offset sample

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction

Data example

Conclusions

Automated attribute extraction

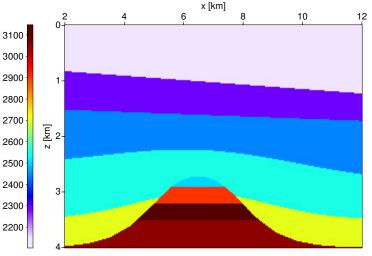
For each selected trace

- search (next) coherence maximum
- get nearest maximum of stack envelope
- align volume with reflection event using first traveltime derivatives
- reject pick if user-defined percentage of all samples inside the volume
 - is below a given coherence threshold or
 - has a dip difference exceeding a given threshold
- or if amplitude is below a user-defined threshold
 - prefer high-energy events
- continue on selected trace

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example


Preconditioning... Basics Smoothing Extraction

Data example

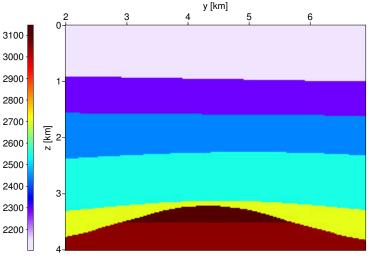
Conclusions

Synthetic data example

interval velocity [m/s] model at y = 5000 m

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction


- Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example
- Preconditioning... Basics Smoothing Extraction

Data example

Conclusions

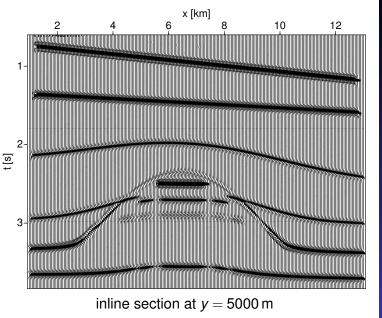
Synthetic data example

interval velocity [m/s] model at x = 5000 m

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example


Preconditioning... Basics Smoothing Extraction

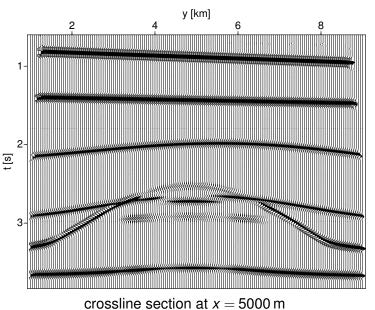
Data example

Conclusions

CRS-stacked volume

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction


Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction

Data example

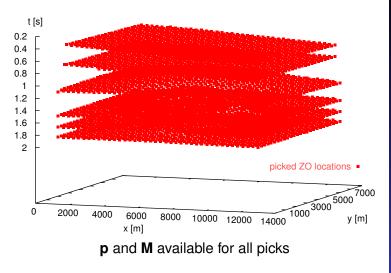
Conclusions

CRS-stacked volume

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example


Preconditioning... Basics Smoothing Extraction

Data example

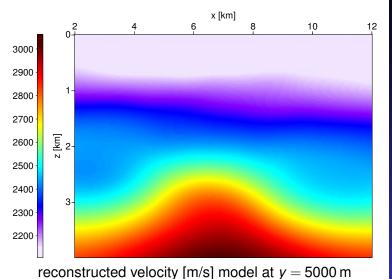
Conclusions

Automatically picked ZO locations

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example


Preconditioning... Basics Smoothing Extraction

Data example

Conclusions

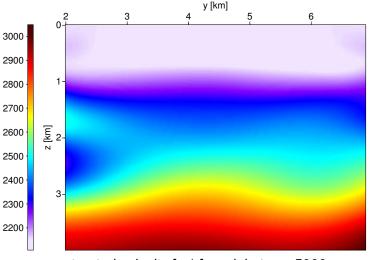
Inversion result (1)

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction


Data example

Conclusions

Acknowledgments

ل د ت ۲ مع ۲ مرد

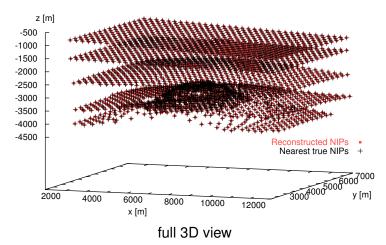
Inversion result (1)

reconstructed velocity [m/s] model at x = 5000 m

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example


Preconditioning... Basics Smoothing Extraction

Data example

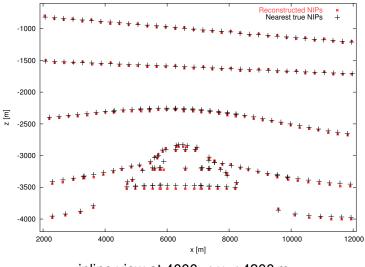
Conclusions

Inversion result (2)

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example


Preconditioning... Basics Smoothing Extraction

Data example

Conclusions

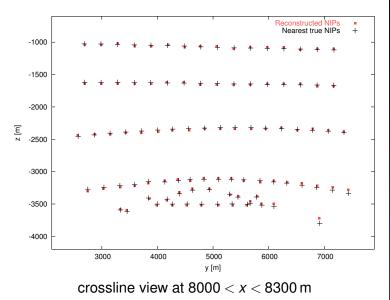
Inversion result (2)

inline view at 4000 < *y* < 4300 m

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example


Preconditioning... Basics Smoothing Extraction

Data example

Conclusions

Inversion result (2)

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction

Data example

Conclusions

Acknowledgments

ل ۱۵، «*۵*» »۹۹»

Conclusions

- 3D tomographic inversion based on CRS attributes
- Advantages:
 - very few picks are required
 - automated smoothing of attributes
 - automated picking in ZO volume
 - no assumptions about reflector continuity
 - smooth velocity model (ideal for ray tracing)
- Limitations:
 - smooth velocity description must be valid
 - limited lateral variation within CRS apertures (approximately hyperbolic traveltimes)

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction

Data example

Conclusions

Acknowledgments

This work was kindly supported by the Federal Ministry of Education and Research (BMBF), Germany, and the sponsors of the Wave Inversion Technology (WIT) consortium.

Contributors:

Miriam Spinner: model building, acquisition design, and forward-modelling with NORSAR Nils-Alexander Müller: 3D CRS stack processing CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction

Data example

Conclusions

CO₂CRS: Tomography T. Klüver & J. Mann

Introduction

Velocity determination NIP waves & velocities CRS tomography Inversion procedure First example

Preconditioning... Basics Smoothing Extraction

Data example

Conclusion

