

Stacking velocity analysis with CRS Stack attributes

Steffen Bergler^{*}, Pedro Chira, Jürgen Mann, Kai-Uwe Vieth, and Peter Hubral

Wave Inversion Technology Geophysical Institute University of Karlsruhe, Germany

Development of the CRS Stack

- Development of the CRS Stack
- How does the CRS Stack work ?

- Development of the CRS Stack
- How does the CRS Stack work ?
- What are the CRS attributes good for ?

- Development of the CRS Stack
- How does the CRS Stack work ?
- What are the CRS attributes good for ?
- CRS Stack and high-resolution stacking velocity analysis

- Development of the CRS Stack
- How does the CRS Stack work ?
- What are the CRS attributes good for ?
- CRS Stack and high-resolution stacking velocity analysis
- Real data example

- Development of the CRS Stack
- How does the CRS Stack work ?
- What are the CRS attributes good for ?
- CRS Stack and high-resolution stacking velocity analysis
- Real data example
- Conclusions

Development of the CRS Stack

Multi-parameter moveout operators for data-driven stacking

Multi-parameter moveout operators for data-driven stacking

2-D zero-offset 3 parameters

Development of the CRS Stack

Multi-parameter moveout operators for data-driven stacking

2-D zero-offset 3 parameters

2-D finite-offset5 parameters

Development of the CRS Stack

Multi-parameter moveout operators for data-driven stacking

2-D zero-offset 3 parameters

2-D finite-offset5 parameters

EAGE Conference & Exhibition, Florence 2002 – p.3

3-D zero-offset 8 parameters

Multi-parameter moveout operators for data-driven stacking

$$\vec{h} = \frac{1}{2} \begin{pmatrix} x_G - x_S \\ y_G - y_S \end{pmatrix}$$

$$\vec{m} = \frac{1}{2} \begin{pmatrix} x_G + x_S \\ y_G + y_S \end{pmatrix}$$

$$\vec{m} = \frac{1}{2} \begin{pmatrix} x_G + x_S \\ y_G + y_S \end{pmatrix}$$

$$\vec{m} = \frac{1}{2} \begin{pmatrix} x_G + x_S \\ y_G + y_S \end{pmatrix}$$

$$\vec{m} = \frac{1}{2} \begin{pmatrix} x_G + x_S \\ y_G + y_S \end{pmatrix}$$

$$\vec{m} = \frac{1}{2} \begin{pmatrix} x_G + x_S \\ y_G + y_S \end{pmatrix}$$

CRS stacking operators for ZO

3-D case: $t_{hyp}^2 = (t_0 - \vec{\mathbf{c}} \cdot \vec{\mathbf{m}})^2 + (\vec{\mathbf{m}}^T \underline{\mathbf{A}} \vec{\mathbf{m}} + \vec{\mathbf{h}}^T \underline{\mathbf{B}} \vec{\mathbf{h}})$

CRS stacking operators for ZO

3-D case: $t_{hyp}^2 = (t_0 - \vec{\mathbf{c}} \cdot \vec{\mathbf{m}})^2 + (\vec{\mathbf{m}}^T \underline{\mathbf{A}} \vec{\mathbf{m}} + \vec{\mathbf{h}}^T \underline{\mathbf{B}} \vec{\mathbf{h}})$ $\vec{\mathbf{c}}$: two-component vector \mathbf{A}, \mathbf{B} : symmetric 2×2 matrices

CRS stacking operators for ZO

3-D case: $t_{hyp}^2 = (t_0 - \vec{\mathbf{c}} \cdot \vec{\mathbf{m}})^2 + (\vec{\mathbf{m}}^T \underline{\mathbf{A}} \vec{\mathbf{m}} + \vec{\mathbf{h}}^T \underline{\mathbf{B}} \vec{\mathbf{h}})$ $\vec{\mathbf{c}}$: two-component vector $\underline{\mathbf{A}}, \underline{\mathbf{B}}$: symmetric 2×2 matrices

2-D case: $t_{hyp}^2 = (t_0 - cm)^2 + (am^2 + bh^2)$

Implementation

Implementation

Implementation

approach is purely data-driven

- approach is purely data-driven
- use of full multi-coverage data volume

- approach is purely data-driven
- use of full multi-coverage data volume
- each ZO sample carries information of

- approach is purely data-driven
- use of full multi-coverage data volume
- each ZO sample carries information of
 stacked amplitude

- approach is purely data-driven
- use of full multi-coverage data volume
- each ZO sample carries information of
 - stacked amplitude
 - stacking parameters

- approach is purely data-driven
- use of full multi-coverage data volume
- each ZO sample carries information of
 - stacked amplitude
 - stacking parameters
 - coherence value

NIP and Normal wave along ZO ray

more accurate stacking velocity

- more accurate stacking velocity
- projected Fresnel zone for parsimonious migration

- more accurate stacking velocity
- projected Fresnel zone for parsimonious migration
- geometrical spreading factor

- more accurate stacking velocity
- projected Fresnel zone for parsimonious migration
- geometrical spreading factor
- wavefield separation

- more accurate stacking velocity
- projected Fresnel zone for parsimonious migration
- geometrical spreading factor
- wavefield separation
- macro-velocity inversion

- more accurate stacking velocity
- projected Fresnel zone for parsimonious migration
- geometrical spreading factor
- wavefield separation
- macro-velocity inversion
- model-independent time migration

2-D case:

 $1/v_{\text{stack}}^2 = \frac{2t_0}{v_0} \frac{\cos^2 \alpha}{R_{\text{NIP}}}$

2-D case:

$$1/v_{\text{stack}}^2 = \frac{2t_0}{v_0} \frac{\cos^2 \alpha}{R_{\text{NIP}}}$$

3-D case:

$$\vec{\mathbf{h}} = r \left(\cos\phi, \sin\phi\right)^{\mathbf{T}} \longrightarrow t_{\mathrm{CMP}}^2 = t_0^2 + \frac{r^2}{v_{\mathrm{stack}}^2}$$

2-D case:

$$1/v_{\text{stack}}^2 = \frac{2t_0}{v_0} \frac{\cos^2 \alpha}{R_{\text{NIP}}}$$

$$\vec{\mathbf{h}} = r \left(\cos\phi, \sin\phi\right)^{\mathbf{T}} \longrightarrow t_{\mathsf{CMP}}^2 = t_0^2 + \frac{r^2}{v_{\mathsf{stack}}^2}$$
$$1/v_{\mathsf{stack}}^2 = \frac{2t_0}{v_0} \left(\cos\phi, \sin\phi\right) \mathbf{T} \mathbf{M} \mathbf{T}^{\mathbf{T}} \left(\cos\phi, \sin\phi\right)^{\mathbf{T}}$$

 much more traces involved in stacking velocity determination compared to conventional methods

- much more traces involved in stacking velocity determination compared to conventional methods
- thus stable and accurate (also in presence of high noise level)

- much more traces involved in stacking velocity determination compared to conventional methods
- thus stable and accurate (also in presence of high noise level)
- high vertical and horizontal resolution

- much more traces involved in stacking velocity determination compared to conventional methods
- thus stable and accurate (also in presence of high noise level)
- high vertical and horizontal resolution
- attribute and coherence sections help to identify events

Result of NMO/DMO/Stack

Result of CRS Stack

Detected stacking velocity in [m/s]

CMP

Depth migration of NMO/DMO/Stack

Depth migration of CRS stack

Applications of the attributes

CMP section

CRS section

CMP stacking velocity

CRS stacking velocity

Projected Fresnel zone

Normalized in-plane geometrical spreading

The data-driven CRS Stack has:

high signal-to-noise ratio

The data-driven CRS Stack has:

- high signal-to-noise ratio
- increased continuity of events

Conclusions

The data-driven CRS Stack has:

- high signal-to-noise ratio
- increased continuity of events
- high vertical and horizontal resolution

Conclusions

The data-driven CRS Stack has:

- high signal-to-noise ratio
- increased continuity of events
- high vertical and horizontal resolution
- kinematic wavefield attributes

Conclusions

The data-driven CRS Stack has:

- high signal-to-noise ratio
- increased continuity of events
- high vertical and horizontal resolution
- kinematic wavefield attributes

CRS Stack makes velocity analysis more reliable

Acknowledgments

This work was supported by the sponsors of the *Wave Inversion Technology Consortium*.

B015	3D zero-offset Common Reflection Surface Stack for land data – real data example
B016	Improved resolution in time and depth processing by macromodel independent CRS Stacking
E023	Generalization of the Common-Reflection-Surface Stack
P165	Topographic correction using CRS parameters
P166	2D and 3D ZO CRS stack for a complex top-surface topogr aphy
P167	A fourth-order CRS moveout for reflection and diffraction events