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Summary

The Common-Reflection-Surface (CRS) Stack in its dif-
ferent variants can be used to extract kinematic informa-
tion for the construction of velocity models from seismic
prestack data. A tomographic inversion method is pre-
sented that makes use of this information, in the form of
first and second spatial derivatives of traveltime, to deter-
mine smooth, laterally inhomogeneous subsurface veloc-
ity models for depth imaging. The input for the inversion
consists of picked CRS attributes at a number of locations
in the simulated zero-offset (or common-offset) section ob-
tained with the CRS Stack. During the iterative inversion
process the required forward-modeled quantities are ob-
tained by dynamic ray-tracing along central rays pertaining
to the input data points. Fréchet derivatives for the tomo-
graphic matrix are calculated with ray perturbation theory.
The inversion can be formulated for the 2-D and 3-D case
with zero-offset central rays, as well as for the case of finite-
offset central rays.

Introduction

The construction of velocity models is an important task for
seismic depth imaging in laterally inhomogeneous media.
An often used tool for the determination of velocity models
is reflection tomography (e. g., Farra and Madariaga, 1988;
Stork and Clayton, 1991). The drawback of tomographic
methods, however, is the large amount of picking that is
necessary to obtain traveltimes from the prestack data, of-
ten along continuous reflectors across the entire section.
In a method introduced by Billette and Lambaré (1998),
called Stereotomography, slope information of locally co-
herent events is used together with traveltimes to obtain a
smooth model. With that approach, no interfaces need to
be introduced in the model. Consequently, no picking along
continuous events is necessary.

Recently, a tomographic method for the construction of
smooth models based on the results of the Common-
Reflection-Surface (CRS) Stack has been presented by
Duveneck and Hubral (2002) and Duveneck (2003). This
approach, which combines aspects of stacking-velocity-
based inversion methods with concepts of Stereotomo-
graphy, makes use of kinematic information in the form
of wavefront curvatures and emergence angles extracted
from the prestack data with the CRS Stack. Here, we will
present an alternative formulation of this method, that is

especially well suited for an extension to the 3-D case. In-
stead of wavefront curvatures and emergence angles, it is
formulated in terms of first and second spatial traveltime
derivatives. If the finite-offset variant of the CRS Stack is
used, the kinematic information obtained with that method
can also be applied in a tomographic inversion. The inver-
sion with finite-offset CRS attributes then closely resembles
Stereotomography, except that in addition to first deriva-
tives, also second derivatives of the traveltime are used.

CRS Stack and attributes

The CRS Stack (e. g., Jäger et al., 2001), which has orig-
inally been developed for obtaining simulated zero-offset
(ZO) sections from seismic multicoverage data, is based
on stacking operators that are of second order in the half-
offset h and midpoint ξ coordinate. For each zero-offset
sample to be simulated, optimum values for the coefficients
of the stacking operator are found directly from the prestack
data with a coherence analysis. Thus, these coefficients,
which are by-products of the CRS Stack, contain kinematic
wavefield information that can be used for the construction
of velocity models for depth imaging.

For a given near-surface velocity value v0, the CRS opera-
tor coefficients can be described in terms of spatial domain
wavefront attributes. In 2-D, these are two radii of wavefront
curvature, denoted by RNIP and RN, and one emergence
angle for each simulated ZO sample. Alternatively, apart
from a description with ray propagator matrix elements and
angles, a description directly in terms of time domain pa-
rameters (first and second spatial traveltime derivatives)
can be used, without the assumption of a near-surface ve-
locity value (e. g., Schleicher et al., 1993). The respective
quantities used to describe the CRS operator coefficients
are called CRS attributes.

The CRS Stack has been extended to handle 3-D seis-
mic data. In that case, the stacking operator is described
by eight CRS attributes. For a given near-surface velocity
value, these can be interpreted as two angles giving the
emergence direction of the central (ZO) ray and three inde-
pendent elements each, of two curvature matrices, called
KNIP and KN. Again, an alternative description with two
first and six second derivatives is possible.

In the finite-offset variant of the CRS Stack, second-order
stacking operators are used, that locally approximate trav-
eltimes around a given finite offset to obtain a simulated
finite-offset (e. g., common-offset) section. The resulting
five CRS attributes (2-D case) pertain to the associated
finite-offset central ray. These CRS attributes can again
be interpreted in terms of two emergence angles and three
wavefront curvatures if near-surface velocity values are
given, or, alternatively, in terms of two first and three sec-
ond traveltime derivatives.
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Tomography with CRS attributes

Here, we will initially only consider the 2-D ZO case, i. e.,
CRS attributes obtained from the 2-D ZO CRS Stack. For
the tomographic inversion presented here, the half travel-
time T = t/2, its first derivative with respect to the midpoint
coordinate, pξ = ∂T/∂ξ , and its second derivative with re-

spect to the half-offset, Mh = ∂ 2T/∂h2, all evaluated on
the central (normal) ray, are used. It can be shown (e. g.,
Hubral, 1983), that up to second order in h, the CMP re-
flection traveltimes coincide with those of the correspond-
ing NIP wave, i. e., the hypothetical wave that would be ob-
tained from placing a point source at the normal-incidence
point (NIP) of the ZO ray on the reflector. The quantity
Mh, together with the one-way traveltime T along the nor-
mal ray, thus describes the approximate second-order trav-
eltime of a NIP wave in the CMP configuration, while the
quantity pξ contains information on the propagation direc-

tion of the NIP wave at the surface location ξ . All required
quantities are directly obtained from the output of the CRS
Stack.

The inversion is based on the criterion that in a correct ve-
locity model all considered NIP waves, when propagated
back into the earth along the normal ray, focus at zero trav-
eltime. This is equivalent to the statement that in a correct
model the CMP traveltimes (described by T and Mh), the
emergence directions (given by pξ ), and the emergence lo-

cations (ξ ) of all considered NIP waves should be correctly
modeled.

Forward modeling of the quantities pξ and Mh for a given
ray starting location and initial slowness vector in the sub-
surface can be done by dynamic ray-tracing in global Carte-
sian coordinates with the depth coordinate z being the inde-
pendent variable along the ray (e. g., Farra and Madariaga,
1987). The ray propagator matrix thus obtained is the
surface-to-surface ray propagator matrix T (e. g., Bortfeld,
1989), assuming horizontal posterior and anterior surfaces
(turning rays are not considered here). As only a point
source response (NIP wave) is considered, the assump-
tion of a horizontal anterior surface in the subsurface does
not imply any limitation to horizontal reflectors. The second
horizontal derivative of the NIP wave traveltime, evaluated
on the central ray, is then given by Mh = DB−1, where D and
B are elements of the ray propagator matrix T. As the true
ray starting locations and initial ray directions (local reflec-
tor dips) of the considered NIP waves are initially unknown,
they have to be considered as part of the model to be in-
verted for, along with the velocity itself.

Formulation and solution of the inverse problem

In the 2-D case, the input for the tomographic inversion con-
sists of a number of points picked in the CRS Stack and
corresponding CRS attribute sections:

(T,Mh, pξ ,ξ )i , i = 1 . . .ndata , (1)

when ndata data points are used. Picked data points are in-
dependent of each other and do not have to follow events
over consecutive traces. Each pick represents the en-
tire approximate (second-order) multi-offset kinematic re-
sponse of a NIP wave.

Each normal-incidence point (NIP) is characterized by its
location in the subsurface (x,z) and the local horizontal

slowness component px of the normal ray, which also de-
termines the local reflector dip. The smooth velocity model
itself can be described by two-dimensional B-splines. To-
gether with the reflection-point parameters, the B-spline co-
efficients v jk define the model:

(x,z, px)i i = 1 . . .ndata ,
v jk j = 1 . . .nx , k = 1 . . .nz ,

(2)

where nx and nz are the chosen numbers of grid points in
the horizontal and vertical directions. The inverse problem
to be solved can be formally stated as follows: a model
vector m, consisting of the elements given in (2), is sought,
that minimizes the misfit between a data vector d, contain-
ing the picked values given in (1), and the corresponding
modeled values dmod = f(m). The operator f symbolizes
the dynamic ray tracing in the given model. As a measure
of misfit the least-squares norm (e. g., Tarantola, 1987) is
used. The modeling operator f is nonlinear, therefore a so-
lution to the inverse problem is found in an iterative way by
locally linearising f and applying linear least-squares min-
imization during each iteration. For details on the solution
strategy and regularization of the problem we refer to Duve-
neck and Hubral (2002) and Duveneck (2003). During each
iteration, the Fréchet derivatives of f at the current model,
i. e., the quantities ∂ (T,Mh, pξ ,ξ )/∂ (x,z, px,v), are required.
These can be obtained during forward modeling with the
help of ray perturbation theory, as described by Farra and
Madariaga (1987).

Extension to the 3-D case

The formulation of the CRS Stack-based inversion pre-
sented here is well suited for an extension to the 3-D case.
The inversion for a 3-D model is completely analogous
to the 2-D case, but makes use of CRS attributes deter-
mined from the prestack data with the 3-D CRS Stack. The
model can be described by velocity coefficients v jkl and
the parameters (x,y,z, px, py)i associated with the normal-
incidence points in the subsurface, corresponding to the
picked input data points (compare (2)). The choice of data
components depends on the azimuth coverage available in
the prestack data. If it is sufficient to allow a reliable de-
termination of the entire matrix Mh with the CRS Stack,
this matrix can be used in the inversion. Theoretically, for
each datapoint, only the second traveltime derivative in one
specified azimuth direction n, i. e., Mn, is required. Data are
then given by (T,Mn, pξx

, pξy
,ξx,ξy)i, (compare (1)).

Extension to the 2-D finite-offset case

The three wavefront curvature values (or alternatively three
second derivatives of traveltime) obtained when applying
the finite-offset CRS Stack depend not only on the veloc-
ity distribution in the subsurface, but also on the reflector
curvature in the vicinity of the reflection point of the central
ray. They can therefore not be directly used in an inversion
without considering the local reflector curvature as an ad-
ditional unknown. Bergler and Hubral (2003) have shown,
however, that an approximation of the common-reflection-
point (CRP) trajectory around the considered finite-offset
sample in the prestack data space can be found from the
CRS attributes. This allows to use the CRS attributes to
calculate wavefront curvatures at the source and receiver
side of a wave that focuses on the reflector at the reflec-
tion point of the central ray, thus eliminating the influence
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of reflector curvature. The associated wavefronts can be
reinterpreted as belonging to two hypothetical waves due
to a point-source at the reflector, traveling upwards along
the source and receiver ray, respectively. These are the
finite-offset equivalents of the NIP wave discussed earlier.
Instead of wavefront curvatures, again the associated sec-
ond traveltime derivatives Ms at the source location ξs and
Mr at the receiver location ξr can be determined. These
second traveltime derivatives, together with the first trav-
eltime derivatives at the source and receiver side, pξs

and
pξr

, the source and receiver coordinates themselves, and
the traveltime t along the finite-offset central ray can then
be used in a tomographic inversion method similar to the
one described above.

Data for the inversion thus consist of values
(t,Ms,Mr, pξs

, pξr
,ξs,ξr)i picked and calculated from

the finite-offset CRS Stack results. The model again
consists of B-spline coefficients v jk together with reflec-
tion point coordinates and, in this case, two horizontal
slowness components (one for each ray segment) at the
reflection point, (x,z, ps, pr)i, associated with the picked
input data. During the inversion, the quantities Ms and
Mr and all other required quantities (for the calculation of
Fréchet derivatives) can be computed independently along
the two ray segments, which have coincident ray starting
coordinates in the subsurface. Like the inversion based
on 2-D ZO CRS attributes, the 2-D finite-offset inversion
can alternatively be formulated in terms of wavefront
curvatures and emergence angles.

The inversion approach based on common-offset CRS
attributes closely resembles Stereotomography as intro-
duced by Billette and Lambaré (1998), except that in ad-
dition, second derivative information Ms and Mr is used.

A synthetic data example

The synthetic example shown here has been obtained with
the formulation of the inversion as presented by Duve-
neck (2003), i. e., data points (T,M,α,ξ )i were used, where
M = 1/v0RNIP, v0 is the near-surface velocity value used
during the CRS Stack, and α is the normal ray emergence
angle. The overall procedure is the same as described
here, though. As a first step, the 2-D ZO CRS Stack was
applied to the synthetic multicoverage data, modeled by
ray-tracing in the blocky model displayed in Figure 1(c).
422 data points were then picked in the resulting simulated
ZO section and associated CRS attribute sections. These
served as the input for the inversion. The velocity model is
defined by 18 × 14 B-spline coefficients on a grid with 500
m horizontal and 300 m vertical spacing. The start model
was chosen to consist of a near-surface velocity of 2000
m/s and a vertical velocity gradient of 0.6 s−1.

The inversion result after 8 iterations, consisting of the
velocity model and the reconstructed normal rays, is dis-
played in Figures 1(a) and (b). The reconstructed model
resembles a smoothed version of the true discontinuous
velocity distribution. It is kinematically correct, i. e., local
reflector elements (dip bars), attached to the end points of
reconstructed normal rays, are, for the most part, placed in
the correct subsurface positions. This is demonstrated in
Fig. 1(c), where the reconstructed reflector elements are
plotted into the original velocity model.

Conclusions

We have presented different variants of a tomographic
method for the construction of smooth velocity models for
depth imaging, based on first and second traveltime deriva-
tives. These can be extracted from seismic prestack data
with the Common-Reflection-Surface Stack, applied either
in its 2-D or 3-D zero-offset, or in its finite-offset version.
Input data points for the inversion are picked from the CRS
Stack section and the associated CRS attribute sections.
Picks are independent of each other and do not have to
follow events over successive traces across the section.
While the inversion approach is similar to a previously pre-
sented method based on wavefront curvatures and emer-
gence angles obtained with the CRS Stack, the formulation
in terms of traveltime derivatives considerably simplifies the
application in the 3-D case.

Acknowledgments

We would like to thank the sponsors of the Wave Inversion
Technology (WIT) Consortium for their support.

References

Bergler, S., and Hubral, P., 2003, Finite-offset CRS at-
tributes for imaging and inversion: SEG/EAGE Re-
search Workshop, Expanded Abstracts.

Billette, F., and Lambaré, G., 1998, Velocity macro-model
estimation from seismic reflection data by stereotomo-
graphy: Geophys. J. Int., 135, 671–690.

Bortfeld, R., 1989, Geometrical ray theory: Rays and trav-
eltimes in seismic systems (second-order approximation
of the traveltimes): Geophysics, 54, no. 3, 342–349.

Duveneck, E., and Hubral, P., 2002, Tomographic veloc-
ity model inversion using kinematic wavefield attributes:
72nd Ann. Internat. Mtg., Soc. Expl. Geophys., Ex-
panded Abstracts, 862–865.

Duveneck, E., 2003, Determination of velocity models from
data-derived wavefront attributes: 65th EAGE Confer-
ence and Exhibition, Expanded Abstracts.

Farra, V., and Madariaga, R., 1987, Seismic waveform
modeling in heterogeneous media by ray perturbation
theory: J. Geophys. Res., 92, no. B3, 2697–2712.

Farra, V., and Madariaga, R., 1988, Non-linear reflection
tomography: Geophys. J., 95, 135–147.

Hubral, P., 1983, Computing true amplitude reflections in a
laterally inhomogeneous earth: Geophysics, 48, no. 8,
1051–1062.

Jäger, R., Mann, J., Höcht, G., and Hubral, P., 2001,
Common-reflection-surface stack: Image and attributes:
Geophysics, 66, no. 1, 97–109.

Schleicher, J., Tygel, M., and Hubral, P., 1993, Parabolic
and hyperbolic paraxial two-point traveltimes in 3D me-
dia: Geophys. Prosp., 41, 495–513.

Stork, C., and Clayton, R. W., 1991, Linear aspects of
tomographic velocity analysis: Geophysics, 56, no. 4,
483–495.

Tarantola, A., 1987, Inverse problem theory: Methods for
data fitting and model parameter estimation: Elsevier,
Amsterdam.

Eighth International Congress of The Brasilian Geophysical Society



Tomographic velocity model estimation with traveltime derivatives 4

(a) 4000 6000 8000 10000 12000
  x [m]

-4000

-2000

0
z 

[m
]

2000

3000

4000

5000

ve
lo

ci
ty

 [m
/s

]

(b) 4000 6000 8000 10000 12000
  x [m]

-4000

-2000

0

z 
[m

]

2000

3000

4000

5000

ve
lo

ci
ty

 [m
/s

]

(c) 4000 6000 8000 10000 12000
  x [m]

-4000

-2000

0

z 
[m

]

2000

3000

4000

5000
ve

lo
ci

ty
 [m

/s
]

Figure 1: (a) Inversion result: reconstructed velocity model and normal rays. (b) Reconstructed model and reflector elements.
(c) Reconstructed reflector elements superimposed onto the original blocky model. The prestack data were modeled by ray-
tracing in the blocky velocity model. The input data for the inversion were picked from the CRS Stack and associated CRS
attribute sections.
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